IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i11p1550147718811099.html
   My bibliography  Save this article

Who owns Internet of Thing devices?

Author

Listed:
  • Yuxuan Jia
  • Bing Han
  • Qiang Li
  • Hong Li
  • Limin Sun

Abstract

Although Internet of Things (IoT) has been recently receiving attention from the research community, undoubtedly, there still exists several privacy concerns about those devices. In particular, IoT devices in the cyberspace are reachable and visible through IP addresses. This article uniquely exploits to qualify the distribution of owner information of IoT devices based on the observation; consumers may write relevant details into the application-layer service on the IoT devices, such as company or usernames. We propose to automatically extract owner annotation by utilizing a set of techniques (network scanning, machine learning, and natural language processing). We use the probing and classifier to determine whether the response data come from an IoT device. The natural language-processing technique is used to extract owner information from IoT devices. We have conducted real-world experiments to evaluate our integrated approach empirically. The results show that the precision is 97% and the coverage is 96%. Furthermore, our approach is running on a more larger unlabeled dataset consisting of 93 million response packets from the whole IPv4 space. Our analysis has drawn upon nearly 4.3 million IoT devices exposed to the public, and it is a typical trail effect of the owner information distribution.

Suggested Citation

  • Yuxuan Jia & Bing Han & Qiang Li & Hong Li & Limin Sun, 2018. "Who owns Internet of Thing devices?," International Journal of Distributed Sensor Networks, , vol. 14(11), pages 15501477188, November.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718811099
    DOI: 10.1177/1550147718811099
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718811099
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718811099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718811099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.