IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i11p1550147718809020.html
   My bibliography  Save this article

Multi-task hybrid dictionary learning for vehicle classification in sensor networks

Author

Listed:
  • Rui Wang
  • Miaomiao Shen
  • Tao Wang
  • Wenming Cao

Abstract

In this article, we propose a novel multi-task hybrid dictionary learning approach for moving vehicle classification tasks using multi-sensor networks to improve the classification accuracy in complex scenes with low time complexity, which considers both correlations and complementary information among multiple heterogeneous sensors simultaneously to learn a hybrid dictionary within observations of each sensor. The efficient hybrid dictionary consists of a synthesis dictionary and an analysis dictionary, where discriminative codes can be generated by the trained analysis dictionary and class-specific discriminative reconstruction can be achieved by the trained synthesis dictionary. Extensive experiments are conducted on real data sets captured by the multiple heterogeneous sensors, and the results demonstrate that the proposed method can use the multi-feature fusion method to improve the vehicle classification accuracy, and it can learn a hybrid dictionary to make sure that the sparse coding matrix is obtained by simple linear mapping function. Moreover, the problem of ℓ p -norm ( p ⩽ 1 ) sparse coding can been solved, to reduce the time complexity of this algorithm, compared with support vector machine, sparse representation classification, label consistent KSVD, Fisher discrimination dictionary learning, hybrid dictionary learning, multi-task sparse representation classification, and multi-task Fisher discrimination dictionary learning algorithms.

Suggested Citation

  • Rui Wang & Miaomiao Shen & Tao Wang & Wenming Cao, 2018. "Multi-task hybrid dictionary learning for vehicle classification in sensor networks," International Journal of Distributed Sensor Networks, , vol. 14(11), pages 15501477188, November.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718809020
    DOI: 10.1177/1550147718809020
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718809020
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718809020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718809020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.