IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i11p1550147718806480.html
   My bibliography  Save this article

Random-forest-based failure prediction for hard disk drives

Author

Listed:
  • Jing Shen
  • Jian Wan
  • Se-Jung Lim
  • Lifeng Yu

Abstract

Failure prediction for hard disk drives is a typical and effective approach to improve the reliability of storage systems. In a large-scale data center environment, the various brands and models of drives serve diverse applications with different input/output workload patterns, and non-ignorable differences exist in each type of drive failures, which make this mechanism much challenging. Although many efforts are devoted to this mechanism, the accuracy still needs to be improved. In this article, we propose a failure prediction method for hard disk drives based on a part-voting random forest, which differentiates prediction of failures in a coarse-grained manner. We conduct groups of validation experiments on two real-world datasets, which contain the SMART data of 64,193 drives. The experimental results show that our proposed method can achieve a better prediction accuracy than state-of-the-art methods.

Suggested Citation

  • Jing Shen & Jian Wan & Se-Jung Lim & Lifeng Yu, 2018. "Random-forest-based failure prediction for hard disk drives," International Journal of Distributed Sensor Networks, , vol. 14(11), pages 15501477188, November.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718806480
    DOI: 10.1177/1550147718806480
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718806480
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718806480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Yang & Maoyu Ran & Chaoqun Zhuang, 2022. "Prediction of Building Electricity Consumption Based on Joinpoint−Multiple Linear Regression," Energies, MDPI, vol. 15(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718806480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.