IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i10p1550147718806719.html
   My bibliography  Save this article

Channel state information–based multi-level fingerprinting for indoor localization with deep learning

Author

Listed:
  • Tao Li
  • Hai Wang
  • Yuan Shao
  • Qiang Niu

Abstract

With the rapid growth of indoor positioning requirements without equipment and the convenience of channel state information acquisition, the research on indoor fingerprint positioning based on channel state information is increasingly valued. In this article, a multi-level fingerprinting approach is proposed, which is composed of two-level methods: the first layer is achieved by deep learning and the second layer is implemented by the optimal subcarriers filtering method. This method using channel state information is termed multi-level fingerprinting with deep learning. Deep neural networks are applied in the deep learning of the first layer of multi-level fingerprinting with deep learning, which includes two phases: an offline training phase and an online localization phase. In the offline training phase, deep neural networks are used to train the optimal weights. In the online localization phase, the top five closest positions to the location position are obtained through forward propagation. The second layer optimizes the results of the first layer through the optimal subcarriers filtering method. Under the accuracy of 0.6 m, the positioning accuracy of two common environments has reached, respectively, 96% and 93.9%. The evaluation results show that the positioning accuracy of this method is better than the method based on received signal strength, and it is better than the support vector machine method, which is also slightly improved compared with the deep learning method.

Suggested Citation

  • Tao Li & Hai Wang & Yuan Shao & Qiang Niu, 2018. "Channel state information–based multi-level fingerprinting for indoor localization with deep learning," International Journal of Distributed Sensor Networks, , vol. 14(10), pages 15501477188, October.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:10:p:1550147718806719
    DOI: 10.1177/1550147718806719
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718806719
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718806719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Achour Achroufene, 2023. "RSSI-based Hybrid Centroid-K-Nearest Neighbors localization method," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 82(1), pages 101-114, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:10:p:1550147718806719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.