IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i10p1550147718804699.html
   My bibliography  Save this article

Fine-grained wireless propagation ambience sensing

Author

Listed:
  • Nan Jing
  • Yu Sun
  • Lin Wang
  • Jinxin Shan

Abstract

The ubiquitous wireless network infrastructure and the need of people’s indoor sensing inspire the work leveraging wireless signal into broad spectrum for indoor applications, including indoor localization, human–computer interaction, and activity recognition. To provide an accurate model selection or feature template, these applications take the system reliability of the signal in line-of-sight and non-line-of-sight propagation into account. Unfortunately, these two types of signal propagation are analyzed in static or mobile scenario separately. Our question is how to use the wireless signal to estimate the signal propagation ambience to facilitate the adaptive complex environment? In this paper, we exploit the Fresnel zone theory and channel state information (CSI) to model the static and mobile ambience detectors. Considering the spatiotemporal correlation of indoor activities, the propagation ambience can be divided into three categories: line-of-sight (LOS), non-line-of-sight (NLOS), and semi-line-of-sight (SLOS), which is used to represent the intermediate state between the LOS and NLOS propagation ambience during user movement. Leveraging the hidden Markov model to estimate the dynamic propagation ambience in the mobile environment, a novel propagation ambience identification method, named Ambience Sensor (Asor), is proposed to improve the real-time performance for the upper applications. Furthermore, Asor is integrated into a localization algorithm, Asor-based localization system (Aloc), to confirm the effectiveness. We prototype Asor and Aloc based on commodity WiFi infrastructure without any hardware modification. In addition, the real-time performance of Asor is evaluated by conducting tracking experiments. The experimental results show that the median detection rate of propagation ambience is superior to the existing methods in absence of any a priori hypothesis of static or mobile scenarios.

Suggested Citation

  • Nan Jing & Yu Sun & Lin Wang & Jinxin Shan, 2018. "Fine-grained wireless propagation ambience sensing," International Journal of Distributed Sensor Networks, , vol. 14(10), pages 15501477188, October.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:10:p:1550147718804699
    DOI: 10.1177/1550147718804699
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718804699
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718804699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:10:p:1550147718804699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.