IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i10p1550147718803303.html
   My bibliography  Save this article

EADetection: An efficient and accurate sequential behavior anomaly detection approach over data streams

Author

Listed:
  • Li Cheng
  • Yijie Wang
  • Yong Zhou
  • Xingkong Ma

Abstract

Due to the increasing arriving rate and complex relationship of behavior data streams, how to detect sequential behavior anomaly in an efficient and accurate manner has become an emerging challenge. However, most of the existing literature simply calculates the anomaly score for segmented sequence, and there is limited work going deep to investigate data stream segment and structural relationship. Moreover, existing studies cannot meet efficiency requirements because of large number of projected subsequences. In this article, we propose EADetection, an efficient and accurate sequential behavior anomaly detection approach over data streams. EADetection adopts time interval and fuzzy logic–based correlation to segment event stream adaptively based on rolling window. Through dynamic projection space–based fast pruning, large number of repeated patterns are reduced to improve detection efficiency. Meanwhile, EADetection calculates the anomaly score by top-k pattern–based abnormal scoring based on directed loop graph–based storage strategy, which ensures the accuracy of detection. Specially, we design and implement a streaming anomaly detection system based on EADetection to perform real-time detection. Extensive experiments confirm that EADetection can achieve real time and improve accuracy, significantly reduces latency by 36.8% and reduces false positive rate by 6.4% compared with existing approach.

Suggested Citation

  • Li Cheng & Yijie Wang & Yong Zhou & Xingkong Ma, 2018. "EADetection: An efficient and accurate sequential behavior anomaly detection approach over data streams," International Journal of Distributed Sensor Networks, , vol. 14(10), pages 15501477188, October.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:10:p:1550147718803303
    DOI: 10.1177/1550147718803303
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718803303
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718803303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:10:p:1550147718803303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.