IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i7p1550147717721810.html
   My bibliography  Save this article

A monitoring method of semiconductor manufacturing processes using Internet of Things–based big data analysis

Author

Listed:
  • Seok-Woo Jang
  • Gye-Young Kim

Abstract

This article proposes an intelligent monitoring system for semiconductor manufacturing equipment, which determines spec-in or spec-out for a wafer in process, using Internet of Things–based big data analysis. The proposed system consists of three phases: initialization, learning, and prediction in real time. The initialization sets the weights and the effective steps for all parameters of equipment to be monitored. The learning performs a clustering to assign similar patterns to the same class. The patterns consist of a multiple time-series produced by semiconductor manufacturing equipment and an after clean inspection measured by the corresponding tester. We modify the Line, Buzo, and Gray algorithm for classifying the time-series patterns. The modified Line, Buzo, and Gray algorithm outputs a reference model for every cluster. The prediction compares a time-series entered in real time with the reference model using statistical dynamic time warping to find the best matched pattern and then calculates a predicted after clean inspection by combining the measured after clean inspection, the dissimilarity, and the weights. Finally, it determines spec-in or spec-out for the wafer. We will present experimental results that show how the proposed system is applied on the data acquired from semiconductor etching equipment.

Suggested Citation

  • Seok-Woo Jang & Gye-Young Kim, 2017. "A monitoring method of semiconductor manufacturing processes using Internet of Things–based big data analysis," International Journal of Distributed Sensor Networks, , vol. 13(7), pages 15501477177, July.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717721810
    DOI: 10.1177/1550147717721810
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717721810
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717721810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717721810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.