IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i7p1550147717718113.html
   My bibliography  Save this article

Design of multi-energy-space-based energy-efficient algorithm in novel software-defined wireless sensor networks

Author

Listed:
  • Liao Wenxing
  • Wu Muqing
  • Wu Yuewei

Abstract

Energy efficiency has always been a hot issue in wireless sensor networks. A lot of energy-efficient algorithms have been proposed to reduce energy consumption in traditional wireless sensor networks. With the emergence of software-defined networking, researchers have demonstrated the feasibility of software-defined networking over traditional wireless sensor networks. Thus, energy-efficient algorithms in software-defined wireless sensor networks have been studied. In this article, we propose an energy-efficient algorithm based on multi-energy-space in software-defined wireless sensor networks. First, we propose a novel architecture of software-defined wireless sensor networks according to current research on software-defined wireless sensor networks. Then, we introduce the concept of multi-energy-space which is based on the residual energy. Based on the novel architecture of software-defined wireless sensor networks and the concept of multi-energy-space, we give a detailed introduction of the main idea of our multi-energy-space-based energy-efficient algorithm. Simulation results show that our proposed algorithm performs better in energy consumption balance and network lifetime extension compared with the typical energy-efficient algorithms in traditional wireless sensor networks.

Suggested Citation

  • Liao Wenxing & Wu Muqing & Wu Yuewei, 2017. "Design of multi-energy-space-based energy-efficient algorithm in novel software-defined wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 13(7), pages 15501477177, July.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717718113
    DOI: 10.1177/1550147717718113
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717718113
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717718113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717718113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.