IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i6p1550147717711621.html
   My bibliography  Save this article

Location deployment of depots and resource relocation for connected car-sharing systems through mobile edge computing

Author

Listed:
  • Xiaolu Zhu
  • Jinglin Li
  • Zhihan Liu
  • Fangchun Yang

Abstract

Mobile edge computing supports the connected cars to ensure real-time, interactive, secured, and distributed services for customers. Connected car-sharing systems, as the promising appliance of connected cars, provide a convenient transportation mode for citizens’ intra-urban commutes. Determining the locations of depots is the primary job in connected car-sharing systems. Existing methods mainly use qualitative method and do not consider spatial–temporal dynamic travel demands. This article proposes a mobile edge computing–based connected car framework which uses normal taxis as connected cars to describe their Global Positioning System trajectory and perform the computing tasks in each mobile edge computing server independently. A spatial–temporal demand coverage approach is developed to optimize the location of depots. This article proposes a deep learning method to predict car-sharing demand constructed by a stacked auto-encoder model and a logistic regression layer. The stacked auto-encoder model is employed for learning the latent spatial and temporal correlation features of demand. A graph-based resource relocation model is proposed to minimize the cost of relocation considering spatio-temporal variation of car-sharing demand. Experiments performed on the large-scale real-world data sets illustrate that our proposed model has superior performance than existing methods.

Suggested Citation

  • Xiaolu Zhu & Jinglin Li & Zhihan Liu & Fangchun Yang, 2017. "Location deployment of depots and resource relocation for connected car-sharing systems through mobile edge computing," International Journal of Distributed Sensor Networks, , vol. 13(6), pages 15501477177, June.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:6:p:1550147717711621
    DOI: 10.1177/1550147717711621
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717711621
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717711621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:6:p:1550147717711621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.