IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i5p1550147717711651.html
   My bibliography  Save this article

An improved neighbor-correlation-extended-Kalman-filter fusion method for indoor navigation

Author

Listed:
  • Junhua Yang
  • Yong Li
  • Wei Cheng

Abstract

The received signal strength–based fingerprinting navigation system is able to provide location information with accuracies in the meter region under the assistance of inertial measuring units. However, the computational complexity in mobile terminal of this cooperation method is great for real-time position. The inertial measuring unit has the drawback of error drift, and not all the device has a self-contained unit. In order to obtain high-accurate and continuous navigation information for indoor general devices in small computations, a novel combination of fusing extended Kalman filter and fingerprinting navigation algorithm, including K-nearest neighbor and Pearson correlation coefficient, is proposed in this article. A prototype of the improved system has been worked in a real scenario. A laptop on a four-wheel handcart is moving at a constant speed in a building storey, and the measurement localization is acquired by fingerprinting algorithm during online phase. Meanwhile, the modification localization is produced by extended Kalman filter when the target is moving in the floor. Finally, compared to K-nearest neighbor, Pearson correlation coefficient, and a combination of both, the final modification localization value is more accurate. The results show that the mean error is 53.2%, 51%, and 25.8% lower than the other three methods.

Suggested Citation

  • Junhua Yang & Yong Li & Wei Cheng, 2017. "An improved neighbor-correlation-extended-Kalman-filter fusion method for indoor navigation," International Journal of Distributed Sensor Networks, , vol. 13(5), pages 15501477177, May.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:5:p:1550147717711651
    DOI: 10.1177/1550147717711651
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717711651
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717711651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:5:p:1550147717711651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.