IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i5p1550147717708728.html
   My bibliography  Save this article

Characterizing the role of vehicular cloud computing in road traffic management

Author

Listed:
  • Iftikhar Ahmad
  • Rafidah Md Noor
  • Ihsan Ali
  • Muhammad Imran
  • Athanasios Vasilakos

Abstract

Vehicular cloud computing is envisioned to deliver services that provide traffic safety and efficiency to vehicles. Vehicular cloud computing has great potential to change the contemporary vehicular communication paradigm. Explicitly, the underutilized resources of vehicles can be shared with other vehicles to manage traffic during congestion. These resources include but are not limited to storage, computing power, and Internet connectivity. This study reviews current traffic management systems to analyze the role and significance of vehicular cloud computing in road traffic management. First, an abstraction of the vehicular cloud infrastructure in an urban scenario is presented to explore the vehicular cloud computing process. A taxonomy of vehicular clouds that defines the cloud formation, integration types, and services is presented. A taxonomy of vehicular cloud services is also provided to explore the object types involved and their positions within the vehicular cloud. A comparison of the current state-of-the-art traffic management systems is performed in terms of parameters, such as vehicular ad hoc network infrastructure, Internet dependency, cloud management, scalability, traffic flow control, and emerging services. Potential future challenges and emerging technologies, such as the Internet of vehicles and its incorporation in traffic congestion control, are also discussed. Vehicular cloud computing is envisioned to have a substantial role in the development of smart traffic management solutions and in emerging Internet of vehicles.

Suggested Citation

  • Iftikhar Ahmad & Rafidah Md Noor & Ihsan Ali & Muhammad Imran & Athanasios Vasilakos, 2017. "Characterizing the role of vehicular cloud computing in road traffic management," International Journal of Distributed Sensor Networks, , vol. 13(5), pages 15501477177, May.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:5:p:1550147717708728
    DOI: 10.1177/1550147717708728
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717708728
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717708728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:5:p:1550147717708728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.