IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i4p1550147717706437.html
   My bibliography  Save this article

Network-coding-based two-way relay cooperation with energy harvesting

Author

Listed:
  • Shunwai Zhang
  • Rongfang Song
  • Tao Hong

Abstract

For the relay cooperation systems or networks, in some scenarios, the relay is deployed in the hard-to-reach areas, such as on the remote mountains or in the sea. It is impractical for the relay to be powered by grid energy. And if the relay is powered by battery, it is difficult and high cost to replace the depleted battery. To overcome the power dependence of the relay, this article proposes the network-coding-based two-way relay cooperation with energy harvesting, where the relay is equipped with multiple antennas for information decoding and energy harvesting. Network coding is adopted at the relay to reduce the time slots, and low-density parity check codes are employed at the sources to improve the reliability. We introduce a maximal ratio combining–based decoding algorithm for the proposed system to achieve coding gain and diversity gain. Furthermore, we analyze the outage probability and bit error rate of the system when the optimal antenna selection algorithm is adopted at the relay to transmit data. Theoretical analysis and numerical simulation results show that the proposed system outperforms the corresponding point-to-point system under the same condition. The result also demonstrates that the relay should be deployed closer to the user whose outage probability is required to be lower.

Suggested Citation

  • Shunwai Zhang & Rongfang Song & Tao Hong, 2017. "Network-coding-based two-way relay cooperation with energy harvesting," International Journal of Distributed Sensor Networks, , vol. 13(4), pages 15501477177, April.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:4:p:1550147717706437
    DOI: 10.1177/1550147717706437
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717706437
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717706437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:4:p:1550147717706437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.