IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i4p1550147717701435.html
   My bibliography  Save this article

Vehicle recognition in acoustic sensor networks using multiple kernel sparse representation over learned dictionaries

Author

Listed:
  • Rui Wang
  • Wenming Cao
  • Zhihai He

Abstract

Sparse representation–based classification and kernel methods have emerged as important methods for pattern recognition. In this work, we study the problem of vehicle recognition using acoustic sensor networks in real-world applications. To improve the recognition accuracy with noise sensor data collected from challenging sensing environments, we develop a new method, called multiple kernel sparse representation–based classification, for vehicle recognition. In the proposed multiple kernel sparse representation–based classification method, acoustic features of vehicles are extracted and mapped into a high-dimensional feature space using a kernel function, which combines multiple kernels to obtain linearly separable samples. To improve the recognition accuracy, we incorporate dictionary learning method K-singular value decomposition into the multiple kernel sparse representation–based classification framework. The vehicle recognition from acoustic sensor network is then formulated into an optimization problem. Our extensive experimental results demonstrate that the proposed multiple kernel sparse representation–based classification method with learned dictionaries outperforms other existing methods in the literature on vehicle recognition from complex acoustic sensor network datasets.

Suggested Citation

  • Rui Wang & Wenming Cao & Zhihai He, 2017. "Vehicle recognition in acoustic sensor networks using multiple kernel sparse representation over learned dictionaries," International Journal of Distributed Sensor Networks, , vol. 13(4), pages 15501477177, April.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:4:p:1550147717701435
    DOI: 10.1177/1550147717701435
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717701435
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717701435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:4:p:1550147717701435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.