IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i1p1550147716683687.html
   My bibliography  Save this article

Recognizing human activities from smartphone sensors using hierarchical continuous hidden Markov models

Author

Listed:
  • Charissa Ann Ronao
  • Sung-Bae Cho

Abstract

Human activity recognition has been gaining more and more attention from researchers in recent years, particularly with the use of widespread and commercially available devices such as smartphones. However, most of the existing works focus on discriminative classifiers while neglecting the inherent time-series and continuous characteristics of sensor data. To address this, we propose a two-stage continuous hidden Markov model framework, which also takes advantage of the innate hierarchical structure of basic activities. This kind of system architecture not only enables the use of different feature subsets on different subclasses, which effectively reduces feature computation overhead, but also allows for varying number of states and iterations. Experiments show that the hierarchical structure dramatically increases classification performance. We analyze the behavior of the accelerometer and gyroscope signals for each activity through graphs, and with added fine tuning of states and training iterations, the proposed method is able to achieve an overall accuracy of up to 93.18%, which is the best performance among the state-of-the-art classifiers for the problem at hand.

Suggested Citation

  • Charissa Ann Ronao & Sung-Bae Cho, 2017. "Recognizing human activities from smartphone sensors using hierarchical continuous hidden Markov models," International Journal of Distributed Sensor Networks, , vol. 13(1), pages 15501477166, January.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:1:p:1550147716683687
    DOI: 10.1177/1550147716683687
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147716683687
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147716683687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:1:p:1550147716683687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.