IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i1p1550147716682739.html
   My bibliography  Save this article

A non-line-of-sight error mitigation method for location estimation

Author

Listed:
  • Chien-Sheng Chen

Abstract

Because there are always non-line-of-sight effects in signal propagation, researchers have proposed various algorithms to mitigate the measured error caused by non-line-of-sight. Initially inspired by flocking birds, particle swarm optimization is an evolutionary computation tool for optimizing a problem by iteratively attempting to improve a candidate solution with respect to a given measure of quality. In this article, we propose a new location algorithm that uses time-of-arrival measurements to improve the mobile station location accuracy when three base stations are available. The proposed algorithm uses the intersections of three time-of-arrival circles based on the particle swarm optimization technique to give a location estimation of the mobile station in non-line-of-sight environments. An object function is used to establish the nonlinear relationship between the intersections of the three circles and the mobile station location. The particle swarm optimization finds the optimal solution of the object function and efficiently determines the mobile station location. The simulation results show that the proposed algorithm performs better than the related algorithms in wireless positioning systems, even in severe non-line-of-sight propagation conditions.

Suggested Citation

  • Chien-Sheng Chen, 2017. "A non-line-of-sight error mitigation method for location estimation," International Journal of Distributed Sensor Networks, , vol. 13(1), pages 15501477166, January.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:1:p:1550147716682739
    DOI: 10.1177/1550147716682739
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147716682739
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147716682739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:1:p:1550147716682739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.