IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i12p1550147717749745.html
   My bibliography  Save this article

Integrated collaborative filtering recommendation in social cyber-physical systems

Author

Listed:
  • Jiachen Xu
  • Anfeng Liu
  • Naixue Xiong
  • Tian Wang
  • Zhengbang Zuo

Abstract

Cyber-physical systems are becoming part of our daily life, and a large number of data are generated at such an unprecedented rate that it becomes larger than ever before in social cyber-physical systems. As a consequence, it is highly desired to process these big data so that meaningful knowledge can be extracted from those vast and diverse data. Based on those large-scale data, using collaborative filtering recommendation methods to recommend some valuable clients or products for those e-commerce websites or users is considered as an effective way. In this work, we present an integrated collaborative filtering recommendation approach that combines item ratings, user ratings, and social trust for making better recommendations. In contrast to previous collaborative filtering recommendation works, integrated collaborative filtering recommendation approach takes full advantage of the correlation between data and takes into consideration the similarity between items, the similarity between users and two kinds of trust among users to select nearest neighbors of both users and items providing the most valuable information for recommendation. On the basis of neighbors selected, integrated collaborative filtering recommendation provides an approach combining two aspects to recommend valuable and suitable items for users. And the concrete process is illustrated as following: (1) the potentially interesting items are obtained by the shopping records of neighbors of a certain user, (2) the potentially interesting items are figured out according to the item neighbors of those items of the user, and (3) determine a few most interesting items combining the two sets of potential items obtained from previous process. A large number of experimental results show that the proposed integrated collaborative filtering recommendation approach can effectively enhance the recommendation performance in terms of mean absolute error and root mean square error. Integrated collaborative filtering recommendation approach could reduce mean absolute error and root mean square error by up to 27.5% and 15.7%, respectively.

Suggested Citation

  • Jiachen Xu & Anfeng Liu & Naixue Xiong & Tian Wang & Zhengbang Zuo, 2017. "Integrated collaborative filtering recommendation in social cyber-physical systems," International Journal of Distributed Sensor Networks, , vol. 13(12), pages 15501477177, December.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:12:p:1550147717749745
    DOI: 10.1177/1550147717749745
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717749745
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717749745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:12:p:1550147717749745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.