IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i10p1550147717737969.html
   My bibliography  Save this article

Evolutionary game-based cooperative strategy for effective capacity of multiple-input-multiple-output communications

Author

Listed:
  • Jianhua Liu
  • Jiadi Yu
  • Minglu Li
  • Luqun Li
  • Dazhi Li
  • Shigen Shen

Abstract

Cooperative-relaying networks have great potential for deployment in next-generation wireless communication networks. However, a cooperative-relaying network using two-dimensional multiple-input-multiple-output technology can further enhance the network performance. In this article, we propose a game theoretical framework for mobile two-dimensional multiple-input-multiple-output communication networks to achieve optimal relay selection and cooperative control. A source node, relay, and destination node can make service-selection decisions dynamically in a two-level network, based on the mobile-channel satisfaction parameters (e.g. spatial-temporal correlation and relay survivability). To model this dynamic interactive decision problem, we propose a hierarchical dynamic game framework. At the outer level, we formulate an evolutionary game to model and analyze the process of adaptive selection of relays for maximizing the multiple-input-multiple-output capacity by relay selection and power allocation. At the inner level, by aligning relays, we formulate an evolutionary game to model a self-organizing network structure for relays, to increase the capacity. A closed-loop evolutionary game equilibrium is considered to solve the dynamic game. Numerical results show that the proposed algorithm can effectively improve the quality of service for mobile two-dimensional multiple-input-multiple-output communication networks.

Suggested Citation

  • Jianhua Liu & Jiadi Yu & Minglu Li & Luqun Li & Dazhi Li & Shigen Shen, 2017. "Evolutionary game-based cooperative strategy for effective capacity of multiple-input-multiple-output communications," International Journal of Distributed Sensor Networks, , vol. 13(10), pages 15501477177, October.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:10:p:1550147717737969
    DOI: 10.1177/1550147717737969
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717737969
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717737969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:10:p:1550147717737969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.