IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v12y2016i8p1550147716664253.html
   My bibliography  Save this article

Efficient distributed storage strategy based on compressed sensing for space information network

Author

Listed:
  • Bo Kong
  • Gengxin Zhang
  • Wei Zhang
  • Dongming Bian
  • Zhidong Xie

Abstract

This article investigates the distributed data storage problem with compressed sensing in the space information network. Since there exists a performance-energy trade-off, most existing strategies focus only on improving the compressed sensing construction performance or reducing the energy consumption, respectively. In order to achieve a better balance, a novel and efficient strategy, referred to as distributed storage strategy based on compressed sensing, is proposed in this article. Unlike other strategies which require source packets visiting the entire network, the proposed strategy is a “one-hop†method since information exchange is only performed between neighbors. Therefore, the compressed sensing measurement matrix depends heavily on the degree of each space node. We prove that the proposed strategy guarantees the compressed sensing reconstruction performance under both sparse orthonormal basis and dense orthonormal basis. Simulation results validate that, compared with the representative CStorage strategy and compressive data persistence strategy, the proposed strategy consumes the least energy and computational overheads, while almost without sacrificing the compressed sensing reconstruction performance.

Suggested Citation

  • Bo Kong & Gengxin Zhang & Wei Zhang & Dongming Bian & Zhidong Xie, 2016. "Efficient distributed storage strategy based on compressed sensing for space information network," International Journal of Distributed Sensor Networks, , vol. 12(8), pages 15501477166, August.
  • Handle: RePEc:sae:intdis:v:12:y:2016:i:8:p:1550147716664253
    DOI: 10.1177/1550147716664253
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147716664253
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147716664253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:12:y:2016:i:8:p:1550147716664253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.