Author
Listed:
- Ping Wang
- Kuo-Ming Chao
- Chi-Chun Lo
- Wen-Hui Lin
- Hsiao-Chung Lin
- Wun-Jie Chao
Abstract
Numerous security concerns exist in smart home systems in which Internet of Things devices are connected through a home network to enable control using a centralised gateway with a handset device from the Internet. Safeguarding personal information privacy is an increasing concern in smart living services. To guarantee the mobile security of smart living services, security managers use taint checking approaches with dynamic taint propagation analysis operations to examine how a software-defined networking app uses sensitive information and investigate suspicious security vulnerabilities of devices and the effects of the spread of taint propagation over the Internet by identifying taint paths. For solving the dynamic taint propagation analysis problem, most approaches focus on cloud computing applications (apps) with malware threat analysis that involves program vulnerability analyses, rather than on the risk posed by suspicious apps connected to the cloud computing server. Accordingly, this article proposes a taint propagation analysis model incorporating a weighted spanning tree analysis scheme for tracking data with taint marking using several taint checking tools with an open software-defined networking architecture for solving the dynamic taint propagation analysis problem. In the proposed model, Android programs perform dynamic taint propagation to analyse the spread of risks posed by suspicious apps connected to the centralised gateway in a smart home system. In probabilistic risk analysis, risk and defence capability are used for each taint path to assist a defender in recognising the attack results against network threats caused by malware infection and to estimate the losses of associated taint sources. A case of threat analysis of a typical cyber security attack is presented to demonstrate the proposed approach. A new approach was used for verifying the details of an attack sequence for malware infection by incorporating a finite state machine to appropriately represent the real dynamic taint propagation analysis situations at various configuration settings and safeguard deployment. The experimental results proved that the threat analysis model enables a defender to convert the spread of taint propagation to loss and estimate the risk of a specific threat using behavioural analysis associated with 60 families of real malware. Consequently, our scheme was significantly effective in predicting the risk and loss of tainted data propagation for security concerns in smart home systems when the number of taint paths associated with the propagation rules discovered through taint analysis was increased.
Suggested Citation
Ping Wang & Kuo-Ming Chao & Chi-Chun Lo & Wen-Hui Lin & Hsiao-Chung Lin & Wun-Jie Chao, 2016.
"Using malware for software-defined networking–based smart home security management through a taint checking approach,"
International Journal of Distributed Sensor Networks, , vol. 12(8), pages 15501477166, August.
Handle:
RePEc:sae:intdis:v:12:y:2016:i:8:p:1550147716662947
DOI: 10.1177/1550147716662947
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:12:y:2016:i:8:p:1550147716662947. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.