Author
Listed:
- Yun Li
- Yishan Su
- Zhigang Jin
- Sumit Chakravarty
Abstract
The high outage probability of an underwater wireless sensor may lead to high energy consumption. How to reduce the outage probability should be considered for underwater acoustic sensor networks (UASNs), where battery change is very difficult. Power control, which is one of the technologies to effectively reduce the outage probability, has also been developed for UASNs. However, when using the power control method with the maximum power to transmit packets, the slow fading of the signal in UASNs leads to serious accumulative interference in the receiver, which in turn leads to an even higher outage probability. Another challenge in UASNs is the complex acoustic channel condition with time-space-frequency variation and uncertain TL, which make it difficult to obtain the channel status information (CSI). To address these issues, a novel partial power control (PPC) algorithm based on outage probability minimization in UASNs is proposed. The proposed algorithm captures transmission loss (TL) using the Markov chain Monte Carlo (MCMC) method and estimates CSI in the next moment using AR prediction. The simulation results show that the proposed algorithm can effectively reduce the accumulative interference to the receiver and then reduce the outage probability by 19.3% at the maximum.
Suggested Citation
Yun Li & Yishan Su & Zhigang Jin & Sumit Chakravarty, 2016.
"The Partial Power Control Algorithm of Underwater Acoustic Sensor Networks Based on Outage Probability Minimization,"
International Journal of Distributed Sensor Networks, , vol. 12(7), pages 5363724-536, July.
Handle:
RePEc:sae:intdis:v:12:y:2016:i:7:p:5363724
DOI: 10.1177/155014775363724
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:12:y:2016:i:7:p:5363724. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.