IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v12y2016i5p2148734.html
   My bibliography  Save this article

Fast and Energy Efficient Multihop D2D Routing Scheme

Author

Listed:
  • Jaesung Park

    (Department of Information Security, University of Suwon, San 2-2, Wau-ri, Bongdam-eup, Hwaseong-si, Gyeonggi-do 445-743, Republic of Korea)

Abstract

Device-to-device (D2D) communications are expected to offload cellular networks and enhance public safety. In addition to the capability of direct communication between devices, the capability of delivering data over multihops in an ad hoc manner by autonomous decision of each device is highly desired to expand application areas of D2D communications. To address this issue, we propose a fast and energy efficient D2D multihop routing method using the geographic locations of nodes. To expedite data delivery while saving transmission powers of nodes, we devise the next hop selection method considering the congestion levels of potential next hops. In addition, we devise a detour scheme to move around a routing hole that is encountered when a node cannot find a neighbor that is closer to the destination of a packet than itself. We also propose management procedures so that each node acquires the locations of destinations and its neighboring nodes. Through extensive simulations, we validate the proposed method by comparing the performance of the proposed method with those of maximum progress method (MaxP), cost over progress method (CoP), and congestion-aware forwarder selection method (CAFS). Even though the number of hops obtained by the proposed method is larger than those obtained by MaxP and CAFS, our method is superior to them in terms of the probability of successfully delivering packets to destinations and total amount of energy consumption. We also show that our method can reduce end-to-end delay considerably compared with CoP.

Suggested Citation

  • Jaesung Park, 2016. "Fast and Energy Efficient Multihop D2D Routing Scheme," International Journal of Distributed Sensor Networks, , vol. 12(5), pages 2148734-214, May.
  • Handle: RePEc:sae:intdis:v:12:y:2016:i:5:p:2148734
    DOI: 10.1155/2016/2148734
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1155/2016/2148734
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/2148734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:12:y:2016:i:5:p:2148734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.