Author
Listed:
- Bo Han
- Xiaowei Gao
- Xiaohui Cui
Abstract
Prediction of aerosol optical thickness (AOT) is important to study worldwide climate changes. Researchers have built multiple AOT prediction models. However, few researches were focused on the validation of input attributes for AOT regression. In this paper, we proposed a support vector regression (SVR) model-based sensitivity analysis approach to order 35 MODIS input attributes according to their sensitivity to prediction outputs. Next, the attribute sensitivity orders are used for feature selection in the context of regression by removing insensitive attribute one at a time or by removing attributes whose sensitive orders are larger than number k . The experimental results based on the collocated data between MODIS and AERONET from 2009 to 2011 showed that the top 10 insensitive attributes can be screened to speed up prediction model computation with very little loss of accuracy. The results also suggested that the top sensitive attributes are the most informative attributes, requiring the highest precision for accurate AOT prediction. Thereby, our approach will be valuable for remote sensing scientists or atmospheric scientists to optimize the design precision of top sensitive attributes in scanning equipment like MODIS and therefore improve AOT retrieval accuracy.
Suggested Citation
Bo Han & Xiaowei Gao & Xiaohui Cui, 2015.
"Model-Based Sensitivity Analysis on Aerosol Optical Thickness Prediction,"
International Journal of Distributed Sensor Networks, , vol. 11(9), pages 326132-3261, September.
Handle:
RePEc:sae:intdis:v:11:y:2015:i:9:p:326132
DOI: 10.1155/2015/326132
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:11:y:2015:i:9:p:326132. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.