IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v11y2015i8p750452.html
   My bibliography  Save this article

A Dynamic Processing System for Sensor Data in IoT

Author

Listed:
  • Minbo Li
  • Yanling Liu
  • Yuanfeng Cai

Abstract

With the development of the Internet of Things (IoT for short), innumerable Wireless Sensor Networks (WSNs) are deployed to capture the information of environmental status in the surrounding physical environment. The data from WSNs, called sensor data, are generated in high frequency. Similar to data of other open-loop applications, for example, network monitoring data, sensor data are heterogeneous, redundant, real-time, massive, and streaming. Hence, sensor data cannot be treated as the IoT business data, which brings complexity and difficulty to information sharing in the open-loop environment. This paper proposes a dynamic sensor data processing (SDP) system to capture and process sensor data continuously on the basis of data streaming technology. Particle Swarm Optimization (PSO) algorithm is employed to train threshold dynamically for data compression avoiding redundancy. With the help of rules setting, the proposed SDP is able to detect exception situations. Meanwhile, the storage models in SQL and NOSQL databases are analyzed and compared trying to seek an appropriate type of database for sensor data storage. The experimental results show that our SDP can compress sensor data through dynamically balancing the accuracy and compression rate and the model on NOSQL database has better performance than the model on SQL database.

Suggested Citation

  • Minbo Li & Yanling Liu & Yuanfeng Cai, 2015. "A Dynamic Processing System for Sensor Data in IoT," International Journal of Distributed Sensor Networks, , vol. 11(8), pages 750452-7504, August.
  • Handle: RePEc:sae:intdis:v:11:y:2015:i:8:p:750452
    DOI: 10.1155/2015/750452
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1155/2015/750452
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/750452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:11:y:2015:i:8:p:750452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.