Author
Listed:
- Ze-xi Hua
- Xiang-dong Chen
Abstract
Bad shunting of track circuit is one of the major risks for railway traffic safety. The occupancy of track will not be correctly detected due to bad shunting, which could severely degrade the efficiency of the train dispatching command, sometimes even causing serious accidents, such as train collision and derailment. To handle the bad shunting problem, the Three Points Test Method is commonly used for detecting track occupancy. However, this method completely relies on manual confirmation and it thus usually leads to low detection efficiency and high labor intensity. In order to improve the detection efficiency and involve as less human labors as possible, this paper proposes a multisensor track occupancy detection model which is based on chaotic neural networks. This model uses the detection results of track occupancy collected by multiple sensors as the fundamental data, and then it calculates their weights using chaotic neural networks for data fusion, and finally the model determines whether the track is occupied. Experimental results and field tests demonstrate that the proposed model is able to provide track occupancy detection with high effectiveness and efficiency. Moreover, the accuracy of detection reaches 99.9999%, which can help to greatly reduce the labor intensity of manual confirmation.
Suggested Citation
Ze-xi Hua & Xiang-dong Chen, 2015.
"Multisensor Track Occupancy Detection Model Based on Chaotic Neural Networks,"
International Journal of Distributed Sensor Networks, , vol. 11(7), pages 896340-8963, July.
Handle:
RePEc:sae:intdis:v:11:y:2015:i:7:p:896340
DOI: 10.1155/2015/896340
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:11:y:2015:i:7:p:896340. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.