IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v11y2015i7p618529.html
   My bibliography  Save this article

Fuzzy-Based Adaptive Countering Method against False Endorsement Insertion Attacks in Wireless Sensor Networks

Author

Listed:
  • Hae Young Lee

Abstract

Wireless sensor networks (WSNs) are vulnerable to false endorsement insertion attacks (FEIAs), where a malicious adversary intentionally inserts incorrect endorsements into legitimate sensing reports in order to block notifications of real events. A centralized solution can detect and adaptively counter FEIAs while conserving the energy of the forwarding nodes because it does not make the nodes verify reports using cryptographic operations. However, to apply this solution to a WSN, the users must carefully select 10 or more security parameters, which are used to determine the occurrences of FEIAs. Thus, an inappropriate choice of a single parameter might result in the misinterpretation of or misdetection of FEIAs. Therefore, the present study proposes a fuzzy-based centralized method for detecting and adaptively countering FEIAs in dense WSNs, where two fuzzy rule-based systems are used to detect an FEIA and to select the most effective countermeasure against the FEIA. A major benefit of the proposed method is that the fuzzy systems can be optimized automatically by combining a genetic algorithm and a simulation. Thus, users only need to write a model of the WSN to apply the proposed method to a WSN. The improved performance with this method is demonstrated by simulation results.

Suggested Citation

  • Hae Young Lee, 2015. "Fuzzy-Based Adaptive Countering Method against False Endorsement Insertion Attacks in Wireless Sensor Networks," International Journal of Distributed Sensor Networks, , vol. 11(7), pages 618529-6185, July.
  • Handle: RePEc:sae:intdis:v:11:y:2015:i:7:p:618529
    DOI: 10.1155/2015/618529
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1155/2015/618529
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/618529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:11:y:2015:i:7:p:618529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.