Author
Listed:
- Kuan-Cheng Lin
- Yi-Hung Huang
- Jason C. Hung
- Yung-Tso Lin
Abstract
Recently, applications of Internet of Things create enormous volumes of data, which are available for classification and prediction. Classification of big data needs an effective and efficient metaheuristic search algorithm to find the optimal feature subset. Cat swarm optimization (CSO) is a novel metaheuristic for evolutionary optimization algorithms based on swarm intelligence. CSO imitates the behavior of cats through two submodes: seeking and tracing. Previous studies have indicated that CSO algorithms outperform other well-known metaheuristics, such as genetic algorithms and particle swarm optimization. This study presents a modified version of cat swarm optimization (MCSO), capable of improving search efficiency within the problem space. The basic CSO algorithm was integrated with a local search procedure as well as the feature selection and parameter optimization of support vector machines (SVMs). Experiment results demonstrate the superiority of MCSO in classification accuracy using subsets with fewer features for given UCI datasets, compared to the original CSO algorithm. Moreover, experiment results show the fittest CSO parameters and MCSO take less training time to obtain results of higher accuracy than original CSO. Therefore, MCSO is suitable for real-world applications.
Suggested Citation
Kuan-Cheng Lin & Yi-Hung Huang & Jason C. Hung & Yung-Tso Lin, 2015.
"Feature Selection and Parameter Optimization of Support Vector Machines Based on Modified Cat Swarm Optimization,"
International Journal of Distributed Sensor Networks, , vol. 11(7), pages 365869-3658, July.
Handle:
RePEc:sae:intdis:v:11:y:2015:i:7:p:365869
DOI: 10.1155/2015/365869
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:11:y:2015:i:7:p:365869. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.