Author
Listed:
- Xi Liao
- Rui Xue
- Dan-feng Zhao
- Yang Wang
Abstract
We propose a linear alternating variable step-size adaptive long-range prediction (AVSS-ALRP) scheme to predict fading signals which is especially suitable for a versatile two-state land mobile satellite (LMS) channel model at S-band. A three-step design procedure is presented to optimize the prediction performance. Firstly, we establish the Gilbert-Elliot channel model based on first-order Markov chain for satellite communication downlink and take advantage of smoothing average to obtain channel observed values. At a second stage, eigenvalue decomposition method is applied to predict future long-range channel state instead of weighted prediction. Finally, combining variable step-size least mean squares and adaptive long-range prediction, we introduce the VSS-ALRP algorithm to predict LMS channel fading signals in the case of “ good †state, and the obtained prediction results would be revised based on the linear prediction of error when shadowing condition is in the “ bad †state. Simulation results show that the proposed scheme can not only offer an accurate prediction for long-range channel state and fading signals over the two-state Gilbert-Elliot channel model and greatly enhance the fading signals’ autocorrelation, but also have considerably better performance than long-range prediction (LRP) algorithm from the results of mean square error (MSE) and correlation coefficient.
Suggested Citation
Xi Liao & Rui Xue & Dan-feng Zhao & Yang Wang, 2015.
"An Alternating Variable Step-Size Adaptive Long-Range Prediction of LMS Fading Signals,"
International Journal of Distributed Sensor Networks, , vol. 11(2), pages 483937-4839, February.
Handle:
RePEc:sae:intdis:v:11:y:2015:i:2:p:483937
DOI: 10.1155/2015/483937
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:11:y:2015:i:2:p:483937. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.