Author
Listed:
- Muhammad Mysorewala
- Muhammad Sabih
- Lahouari Cheded
- Mohammad Tariq Nasir
- Muhammad Ismail
Abstract
We propose a novel energy-aware approach to detect a leak and estimate its size and location in a noisy water pipeline using least-squares and various pressure measurements in the pipeline network. The novelty in our work hinges on the fusion of the duty-cycling (DC) and data-driven (DD) strategies, both well-known techniques for energy reduction in a wireless sensor network (WSN). To maximize the information gain and minimize the energy consumed by the WSN, we first study the effects of (a) various levels of sensor measurement uncertainty and (b) the use of the smallest possible number of pressure sensors on the overall accuracy of our approach. Using the DD strategy only, a noisy environment, and a small number of sensors, the performance of our scheme shows that, for small leak sizes, the estimation error in both leak location and size becomes unacceptably high. Next, using as few sensors as possible for an acceptable accuracy, we fused the DD strategy with the DC one to minimize the sensing, processing, and communication energies. The fusion approach yielded a better performance with significant energy saving, even in noisy environments. EPANET was used to model the pipeline network and leak and MATLAB to implement, analyze, and evaluate our fusion approach.
Suggested Citation
Muhammad Mysorewala & Muhammad Sabih & Lahouari Cheded & Mohammad Tariq Nasir & Muhammad Ismail, 2015.
"A Novel Energy-Aware Approach for Locating Leaks in Water Pipeline Using a Wireless Sensor Network and Noisy Pressure Sensor Data,"
International Journal of Distributed Sensor Networks, , vol. 11(10), pages 675454-6754, October.
Handle:
RePEc:sae:intdis:v:11:y:2015:i:10:p:675454
DOI: 10.1155/2015/675454
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:11:y:2015:i:10:p:675454. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.