IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v11y2015i10p102687.html
   My bibliography  Save this article

Detecting Malware Based on DNS Graph Mining

Author

Listed:
  • Futai Zou
  • Siyu Zhang
  • Weixiong Rao
  • Ping Yi

Abstract

Malware remains a major threat to nowadays Internet. In this paper, we propose a DNS graph mining-based malware detection approach. A DNS graph is composed of DNS nodes, which represent server IPs, client IPs, and queried domain names in the process of DNS resolution. After the graph construction, we next transform the problem of malware detection to the graph mining task of inferring graph nodes' reputation scores using the belief propagation algorithm. The nodes with lower reputation scores are inferred as those infected by malwares with higher probability. For demonstration, we evaluate the proposed malware detection approach with real-world dataset. Our real-world dataset is collected from campus DNS servers for three months and we built a DNS graph consisting of 19,340,820 vertices and 24,277,564 edges. On the graph, we achieve a true positive rate 80.63% with a false positive rate 0.023%. With a false positive of 1.20%, the true positive rate was improved to 95.66%. We detected 88,592 hosts infected by malware or C&C servers, accounting for the percentage of 5.47% among all hosts. Meanwhile, 117,971 domains are considered to be related to malicious activities, accounting for 1.5% among all domains. The results indicate that our method is efficient and effective in detecting malwares.

Suggested Citation

  • Futai Zou & Siyu Zhang & Weixiong Rao & Ping Yi, 2015. "Detecting Malware Based on DNS Graph Mining," International Journal of Distributed Sensor Networks, , vol. 11(10), pages 102687-1026, October.
  • Handle: RePEc:sae:intdis:v:11:y:2015:i:10:p:102687
    DOI: 10.1155/2015/102687
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1155/2015/102687
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/102687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:11:y:2015:i:10:p:102687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.