Author
Listed:
- Jing Zhao
- Yajuan Qin
- Dong Yang
- Ying Rao
Abstract
Most applications of industrial wireless sensor networks (IWSNs) should converge process data generated by each node to the central manager. The data collection operation results in an important communication primitive referred to as convergecast. Convergecast is a many-to-one communication paradigm as a critical functionality deployed for industrial monitoring and control. Delaying of process data may degrade the overall control performance and even lead to the malfunction of industrial applications. Therefore, timeslot and channel resources should be scheduled efficiently for real-time communication. This paper is interested in determining a TDMA schedule that minimizes the number of timeslots and completes convergecast with a limited number of channels. In order to achieve the lower bound derived by theoretical analysis, we proposed a source aware scheduling algorithm for general network. For IWSNs with a fixed number of available channels, we present a source aware scheduling algorithm with constrained channel. According to simulation results, we demonstrate that the performance of our algorithm is close to the lower bound on latency with a limited number of channels. Our algorithm is also scalable for schedules with multiple packets and specific transmission latency of a single packet.
Suggested Citation
Jing Zhao & Yajuan Qin & Dong Yang & Ying Rao, 2014.
"A Source Aware Scheduling Algorithm for Time-Optimal Convergecast,"
International Journal of Distributed Sensor Networks, , vol. 10(6), pages 251218-2512, June.
Handle:
RePEc:sae:intdis:v:10:y:2014:i:6:p:251218
DOI: 10.1155/2014/251218
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:10:y:2014:i:6:p:251218. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.