Author
Listed:
- Feng Yu
- Minghua Jiang
- Jing Liang
- Xiao Qin
- Ming Hu
- Tao Peng
- Xinrong Hu
Abstract
Indoor localization based on existent WiFi signal strength is becoming more and more prevalent and ubiquitous. Unfortunately, the WiFi received signal strength (RSS) is susceptible by multipath, signal attenuation, and environmental changes, which is the major challenge for accurate indoor localization. To overcome these limitations, we propose the cluster k -nearest neighbor (KNN) algorithm with 5 G WiFi signal to reduce the environmental interference and improve the localization performance without additional equipment. In this paper, we propose three approaches to improve the performance of localization algorithm. For one thing, we reduce the computation effort based on the coarse localization algorithm. For another, according to the detailed analysis of the 2.4 G and 5 G signal fluctuation, we expand the real-time measurement RSS before matching the fingerprint map. More importantly, we select the optimal nearest neighbor points based on the proposed cluster KNN algorithm. We have implemented the proposed algorithm and evaluated the performance with existent popular algorithms. Experimental results demonstrate that the proposed algorithm can effectively improve localization accuracy and exhibit superior performance in terms of localization stabilization and computation effort.
Suggested Citation
Feng Yu & Minghua Jiang & Jing Liang & Xiao Qin & Ming Hu & Tao Peng & Xinrong Hu, 2014.
"5 G WiFi Signal-Based Indoor Localization System Using Cluster k-Nearest Neighbor Algorithm,"
International Journal of Distributed Sensor Networks, , vol. 10(12), pages 247525-2475, December.
Handle:
RePEc:sae:intdis:v:10:y:2014:i:12:p:247525
DOI: 10.1155/2014/247525
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:10:y:2014:i:12:p:247525. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.