IDEAS home Printed from https://ideas.repec.org/a/sae/inrsre/v34y2011i3p339-367.html
   My bibliography  Save this article

Constructs for Multilevel Closest Assignment in Location Modeling

Author

Listed:
  • Ting L. Lei

    (Department of Geography, University of California, Santa Barbara, CA, USA, tinglei@geog.ucsb.edu)

  • Richard L. Church

    (Department of Geography, University of California, Santa Barbara, CA, USA)

Abstract

In the classic p-median problem, it is assumed that each point of demand will be served by his or her closest located facility. The p-median problem can be thought of as a ‘‘single-level’’ allocation and location problem, as all demand at a specific location is assigned as a whole unit to the closest facility. In some service protocols, demand assignment has been defined as ‘‘multilevel’’ where each point of demand may be served a certain percentage of the time by the closest facility, a certain percentage of the time by the second closest facility, and so on. This article deals with the case in which there is a need for ‘‘explicit’’ closest assignment (ECA) constraints. The authors review past location modeling work that involves single-level ECA constraints as well as specific constraint constructs that have been proposed to ensure single-level closest assignment. They then show how each of the earlier proposed ECA constructs can be generalized for the ‘‘multilevel’’ case. Finally, the authors provide computational experience using these generalized ECA constructs for a novel multilevel facility interdiction problem introduced in this article. Altogether, this article proposes both a new set of constraint structures that can be used in location models involving multilevel assignment as well as a new facility interdiction model that can be used to optimize worst case levels of facility disruption.

Suggested Citation

  • Ting L. Lei & Richard L. Church, 2011. "Constructs for Multilevel Closest Assignment in Location Modeling," International Regional Science Review, , vol. 34(3), pages 339-367, July.
  • Handle: RePEc:sae:inrsre:v:34:y:2011:i:3:p:339-367
    DOI: 10.1177/0160017610386483
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0160017610386483
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0160017610386483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark S. Daskin, 1983. "A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution," Transportation Science, INFORMS, vol. 17(1), pages 48-70, February.
    2. M. L. Balinski, 1965. "Integer Programming: Methods, Uses, Computations," Management Science, INFORMS, vol. 12(3), pages 253-313, November.
    3. Richard L. Church & Kenneth L. Roberts, 1983. "Generalized Coverage Models And Public Facility Location," Papers in Regional Science, Wiley Blackwell, vol. 53(1), pages 117-135, January.
    4. Gregory Dobson & Uday S. Karmarkar, 1987. "Competitive Location on a Network," Operations Research, INFORMS, vol. 35(4), pages 565-574, August.
    5. Alan T. Murray & Richard L. Church & Ross A. Gerrard & Wing‐Sing Tsui, 1998. "Impact Models For Siting Undesirable Facilities," Papers in Regional Science, Wiley Blackwell, vol. 77(1), pages 19-36, January.
    6. Jerry R. Weaver & Richard L. Church, 1985. "A Median Location Model with Nonclosest Facility Service," Transportation Science, INFORMS, vol. 19(1), pages 58-74, February.
    7. ReVelle, Charles, 1993. "Facility siting and integer-friendly programming," European Journal of Operational Research, Elsevier, vol. 65(2), pages 147-158, March.
    8. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    9. Hanjoul, Pierre & Peeters, Dominique, 1987. "A facility location problem with clients' preference orderings," Regional Science and Urban Economics, Elsevier, vol. 17(3), pages 451-473, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Espejo, Inmaculada & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2015. "Capacitated p-center problem with failure foresight," European Journal of Operational Research, Elsevier, vol. 247(1), pages 229-244.
    2. Lei, Ting L. & Church, Richard L., 2015. "On the unified dispersion problem: Efficient formulations and exact algorithms," European Journal of Operational Research, Elsevier, vol. 241(3), pages 622-630.
    3. Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2015. "The maximin HAZMAT routing problem," European Journal of Operational Research, Elsevier, vol. 241(1), pages 15-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting L. Lei & Richard L. Church, 2014. "Vector Assignment Ordered Median Problem," International Regional Science Review, , vol. 37(2), pages 194-224, April.
    2. Yun, Lifen & Qin, Yong & Fan, Hongqiang & Ji, Changxu & Li, Xiaopeng & Jia, Limin, 2015. "A reliability model for facility location design under imperfect information," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 596-615.
    3. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    4. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    5. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    6. Masashi Miyagawa, 2012. "Joint distribution of distances to the first and the second nearest facilities," Journal of Geographical Systems, Springer, vol. 14(2), pages 209-222, April.
    7. Xu, Jing & Murray, Alan T. & Church, Richard L. & Wei, Ran, 2023. "Service allocation equity in location coverage analytics," European Journal of Operational Research, Elsevier, vol. 305(1), pages 21-37.
    8. F. Antonio Medrano, 2020. "The complete vertex p-center problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 327-343, October.
    9. Espejo, Inmaculada & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2012. "Closest assignment constraints in discrete location problems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 49-58.
    10. Harkness, Joseph & ReVelle, Charles, 2003. "Facility location with increasing production costs," European Journal of Operational Research, Elsevier, vol. 145(1), pages 1-13, February.
    11. Stephanie A. Snyder & Robert G. Haight, 2016. "Application of the Maximal Covering Location Problem to Habitat Reserve Site Selection," International Regional Science Review, , vol. 39(1), pages 28-47, January.
    12. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    13. Li, Xiaopeng & Ouyang, Yanfeng & Peng, Fan, 2013. "A supporting station model for reliable infrastructure location design under interdependent disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 80-93.
    14. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    15. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    16. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    17. O’Hanley, Jesse R. & Scaparra, M. Paola & García, Sergio, 2013. "Probability chains: A general linearization technique for modeling reliability in facility location and related problems," European Journal of Operational Research, Elsevier, vol. 230(1), pages 63-75.
    18. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    19. Yun Bai & Xiaopeng Li & Fan Peng & Xin Wang & Yanfeng Ouyang, 2015. "Effects of Disruption Risks on Biorefinery Location Design," Energies, MDPI, vol. 8(2), pages 1-19, February.
    20. Akgün, İbrahim & Gümüşbuğa, Ferhat & Tansel, Barbaros, 2015. "Risk based facility location by using fault tree analysis in disaster management," Omega, Elsevier, vol. 52(C), pages 168-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:inrsre:v:34:y:2011:i:3:p:339-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.