IDEAS home Printed from https://ideas.repec.org/a/sae/evarev/v41y2017i4p326-356.html
   My bibliography  Save this article

A Design-Based Approach to Improve External Validity in Welfare Policy Evaluations

Author

Listed:
  • Elizabeth Tipton
  • Laura R. Peck

Abstract

Background: Large-scale randomized experiments are important for determining how policy interventions change average outcomes. Researchers have begun developing methods to improve the external validity of these experiments. One new approach is a balanced sampling method for site selection, which does not require random sampling and takes into account the practicalities of site recruitment including high nonresponse. Method: The goal of balanced sampling is to develop a strategic sample selection plan that results in a sample that is compositionally similar to a well-defined inference population. To do so, a population frame is created and then divided into strata, which “focuses†recruiters on specific subpopulations. Units within these strata are then ranked, thus identifying “replacements†similar to sites that can be recruited when the ideal site refuses to participate in the experiment. Result: In this article, we consider how a balanced sample strategic site selection method might be implemented in a welfare policy evaluation. Conclusion: We find that simply developing a population frame can be challenging, with three possible and reasonable options arising in the welfare policy arena. Using relevant study-specific contextual variables, we craft a recruitment plan that considers nonresponse.

Suggested Citation

  • Elizabeth Tipton & Laura R. Peck, 2017. "A Design-Based Approach to Improve External Validity in Welfare Policy Evaluations," Evaluation Review, , vol. 41(4), pages 326-356, August.
  • Handle: RePEc:sae:evarev:v:41:y:2017:i:4:p:326-356
    DOI: 10.1177/0193841X16655656
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0193841X16655656
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0193841X16655656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert B. Olsen & Larry L. Orr & Stephen H. Bell & Elizabeth A. Stuart, 2013. "External Validity in Policy Evaluations That Choose Sites Purposively," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 32(1), pages 107-121, January.
    2. David Card & Jochen Kluve & Andrea Weber, 2010. "Active Labour Market Policy Evaluations: A Meta-Analysis," Economic Journal, Royal Economic Society, vol. 120(548), pages 452-477, November.
    3. Colm O'Muircheartaigh & Larry V. Hedges, 2014. "Generalizing from unrepresentative experiments: a stratified propensity score approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(2), pages 195-210, February.
    4. Thomas D. Cook, 2014. "Generalizing Causal Knowledge In The Policy Sciences: External Validity As A Task Of Both Multiattribute Representation And Multiattribute Extrapolation," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 33(2), pages 527-536, March.
    5. Elizabeth A. Stuart & Stephen R. Cole & Catherine P. Bradshaw & Philip J. Leaf, 2011. "The use of propensity scores to assess the generalizability of results from randomized trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 369-386, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elizabeth A. Stuart & Anna Rhodes, 2017. "Generalizing Treatment Effect Estimates From Sample to Population: A Case Study in the Difficulties of Finding Sufficient Data," Evaluation Review, , vol. 41(4), pages 357-388, August.
    2. Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2021. "From Local to Global: External Validity in a Fertility Natural Experiment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 217-243, January.
    3. Jacob Alex Klerman, 2017. "Editor in Chief’s Comment: External Validity in Systematic Reviews," Evaluation Review, , vol. 41(5), pages 391-402, October.
    4. Wendy Chan, 2018. "Applications of Small Area Estimation to Generalization With Subclassification by Propensity Scores," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 182-224, April.
    5. Elizabeth Tipton & Kelly Hallberg & Larry V. Hedges & Wendy Chan, 2017. "Implications of Small Samples for Generalization: Adjustments and Rules of Thumb," Evaluation Review, , vol. 41(5), pages 472-505, October.
    6. Esterling, Kevin & Brady, David & Schwitzgebel, Eric, 2021. "The Necessity of Construct and External Validity for Generalized Causal Claims," OSF Preprints 2s8w5, Center for Open Science.
    7. Sharples, Linda D., 2018. "The role of statistics in the era of big data: Electronic health records for healthcare research," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 105-110.
    8. Elizabeth Tipton, 2021. "Beyond generalization of the ATE: Designing randomized trials to understand treatment effect heterogeneity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 504-521, April.
    9. Michael Gechter & Keisuke Hirano & Jean Lee & Mahreen Mahmud & Orville Mondal & Jonathan Morduch & Saravana Ravindran & Abu S. Shonchoy, 2024. "Selecting Experimental Sites for External Validity," Papers 2405.13241, arXiv.org.
    10. Esterling, Kevin M. & Brady, David & Schwitzgebel, Eric, 2023. "The Necessity of Construct and External Validity for Generalized Causal Claims," I4R Discussion Paper Series 18, The Institute for Replication (I4R).
    11. Peter Z. Schochet, "undated". "Statistical Theory for the RCT-YES Software: Design-Based Causal Inference for RCTs," Mathematica Policy Research Reports a0c005c003c242308a92c02dc, Mathematica Policy Research.
    12. Xinkun Nie & Guido Imbens & Stefan Wager, 2021. "Covariate Balancing Sensitivity Analysis for Extrapolating Randomized Trials across Locations," Papers 2112.04723, arXiv.org.
    13. Elizabeth Tipton & Robert B. Olsen, "undated". "Enhancing the Generalizability of Impact Studies in Education," Mathematica Policy Research Reports 35d5625333dc480aba9765b3b, Mathematica Policy Research.
    14. Sarah A. Avellar & Jaime Thomas & Rebecca Kleinman & Emily Sama-Miller & Sara E. Woodruff & Rebecca Coughlin & T’Pring R. Westbrook, 2017. "External Validity: The Next Step for Systematic Reviews?," Evaluation Review, , vol. 41(4), pages 283-325, August.
    15. repec:mpr:mprres:8128 is not listed on IDEAS
    16. Andrews, Isaiah & Oster, Emily, 2019. "A simple approximation for evaluating external validity bias," Economics Letters, Elsevier, vol. 178(C), pages 58-62.
    17. Deaton, Angus & Cartwright, Nancy, 2018. "Understanding and misunderstanding randomized controlled trials," Social Science & Medicine, Elsevier, vol. 210(C), pages 2-21.
    18. Elizabeth Tipton, 2014. "How Generalizable Is Your Experiment? An Index for Comparing Experimental Samples and Populations," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 478-501, December.
    19. Andrew P. Jaciw, 2016. "Assessing the Accuracy of Generalized Inferences From Comparison Group Studies Using a Within-Study Comparison Approach," Evaluation Review, , vol. 40(3), pages 199-240, June.
    20. Anders Gustafsson, 2019. "Busy doing nothing: why politicians implement inefficient policies," Constitutional Political Economy, Springer, vol. 30(3), pages 282-299, September.
    21. María laura Alzúa & Guillermo Cruces & Carolina Lopez, 2016. "Long-Run Effects Of Youth Training Programs: Experimental Evidence From Argentina," Economic Inquiry, Western Economic Association International, vol. 54(4), pages 1839-1859, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:evarev:v:41:y:2017:i:4:p:326-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.