IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v50y2023i4p983-999.html
   My bibliography  Save this article

A network-based analysis to assess COVID-19 disruptions in the Bogotá BRT system

Author

Listed:
  • Juan D. Garcia-Arteaga
  • Laura Lotero

Abstract

The global COVID-19 crisis has severely affected mass transit in the cities of the global south. Fear of widespread propagation in public spaces and the dramatic decrease in human mobility due to lockdowns have resulted in a significant reduction of public transport options. We analyze the case of TransMilenio in Bogotá, a massive Bus Rapid Transit system that is the main mode of transport for an urban area of roughly 10 million inhabitants. Concerns over social distancing and new health regulations reduced the number of trips to under 20% of its historical values during extended periods of time during the lockdowns. This has sparked a renewed interest in developing innovative data-driven responses to COVID-19 resulting in large corpora of TransMilenio data being made available to the public. In this paper we use a database updated daily with individual passenger card swipe validation microdata including entry time, entry station, and a hash of the card’s ID. The opportunity of having daily detailed minute-to-minute ridership information and the challenge of extracting useful insights from the massive amount of raw data (∼1,000,000 daily records) require the development of tailored data analysis approaches. Our objective is to use the natural representation of urban mobility offered by networks to make pairwise quantitative similarity measurements between daily commuting patterns and then use clustering techniques to reveal behavioral disruptions as well as the most affected geographical areas due to the different pandemic stages. This method proved to be efficient for the analysis of large amount of data and may be used in the future to make temporal analysis of similarly large datasets in urban contexts.

Suggested Citation

  • Juan D. Garcia-Arteaga & Laura Lotero, 2023. "A network-based analysis to assess COVID-19 disruptions in the Bogotá BRT system," Environment and Planning B, , vol. 50(4), pages 983-999, May.
  • Handle: RePEc:sae:envirb:v:50:y:2023:i:4:p:983-999
    DOI: 10.1177/23998083221150646
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083221150646
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083221150646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:50:y:2023:i:4:p:983-999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.