Author
Listed:
- Wu Hupeng
- Jian Kang
- Jin Hong
Abstract
Many studies have demonstrated that the effect of urban street spatial shape on sound propagation cannot be ignored. Most previous studies are based on idealised spatial models and but not systematically and comprehensively examine the real and complex street space. This paper takes the actual streets of a high-density city as research objects, select reliable spatial parameters, obtain the acoustic propagation data using computer simulation, identify the sound propagation characteristics and establish sound propagation models of urban streets. In total, 144 samples have been tested, 13 spatial parameters, including the width information, height information, section information and plan information of streets, have been selected, and three acoustic indices, which include the sound attenuation, reverberation time and early decay time, have been analysed in this paper. The sound propagation in the urban street is consistent with the propagation characteristics of the semi-free sound field, i.e. the sound attenuation is linearly correlated with the logarithm of the sound propagation distance. This linear correlation becomes more pronounced for the greater Plan enclosure degree and more even distribution of façades. The trend of sound attenuations decreases with the increasing Cross-sectional enclosure degree , increasing Plan enclosure degree in the Near Zone or decreasing Vehicle lane width . Reverberation time is primarily distributed between 1.0 s and 3.0 s and tends to be stable when the propagation distance increases. The mean reverberation time increases with the increasing Mean façade height , Sidewalk width , Cross-sectional enclosure degree in the Near Zone or Standard deviation of Plan enclosure degree in the Near Zone . The typical early decay time distribution curve is clearly divided into two areas along the propagation direction. In the first area, the early decay time value is notably small and nearly equals zero. With a sudden increase, the early decay time maintains at a relatively stable value in the second area (stable area) of 0 to 3.0 s. The mean early decay time in the stable area increases with the increasing Vehicle lane width , increasing Cross-sectional enclosure degree or decreasing Standard deviation of Plan enclosure degree in the Near Zone .
Suggested Citation
Wu Hupeng & Jian Kang & Jin Hong, 2019.
"Effects of urban street spatial parameters on sound propagation,"
Environment and Planning B, , vol. 46(2), pages 341-358, February.
Handle:
RePEc:sae:envirb:v:46:y:2019:i:2:p:341-358
DOI: 10.1177/2399808317714799
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:46:y:2019:i:2:p:341-358. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.