IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v39y2012i2p213-228.html
   My bibliography  Save this article

Empirically Derived Neighbourhood Rules for Urban Land-Use Modelling

Author

Listed:
  • Henning S Hansen

    (Department of Development and Planning, Aalborg University, Lautrupvang 2B, DK-2750 Ballerup, Denmark)

Abstract

Land-use modelling and spatial scenarios have gained attention as a means to meet the challenge of reducing uncertainty in spatial planning and decision making. Many of the recent modelling efforts incorporate cellular automata to accomplish spatially explicit land-use-change modelling. Spatial interaction between neighbouring land uses is an important component in urban cellular automata. Nevertheless, this component is often calibrated through trial-and-error estimation. The aim of this project has been to develop an empirically derived landscape metric supporting cellular-automata-based land-use modelling. Through access to very detailed urban land-use data it has been possible to derive neighbourhood rules empirically, and test their sensitivity to the land-use classification applied, the regional variability of the rules, and their time variance. The developed methodology can be implemented easily and thus used as a much needed replacement for the various trial-and-error approaches that are often applied in land-use modelling.

Suggested Citation

  • Henning S Hansen, 2012. "Empirically Derived Neighbourhood Rules for Urban Land-Use Modelling," Environment and Planning B, , vol. 39(2), pages 213-228, April.
  • Handle: RePEc:sae:envirb:v:39:y:2012:i:2:p:213-228
    DOI: 10.1068/b36008t
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b36008t
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b36008t?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michel Hagoort & Stan Geertman & Henk Ottens, 2008. "Spatial externalities, neighbourhood rules and CA land-use modelling," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 39-56, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangyang Yuan & Yuchen Yang & Ruijun Wang & Yuning Cheng, 2022. "Predicting Rural Ecological Space Boundaries in the Urban Fringe Area Based on Bayesian Network: A Case Study in Nanjing, China," Land, MDPI, vol. 11(11), pages 1-24, October.
    2. Guzman, Luis A. & Escobar, Francisco & Peña, Javier & Cardona, Rafael, 2020. "A cellular automata-based land-use model as an integrated spatial decision support system for urban planning in developing cities: The case of the Bogotá region," Land Use Policy, Elsevier, vol. 92(C).
    3. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    4. Mutandwa, Edward & Grala, Robert K. & Grebner, Donald L., 2016. "Family forest land availability for the production of ecosystem services in Mississippi, United States," Forest Policy and Economics, Elsevier, vol. 73(C), pages 18-24.
    5. Ton de Nijs & Edzer Pebesma, 2010. "Estimating the Influence of the Neighbourhood in the Development of Residential Areas in the Netherlands," Environment and Planning B, , vol. 37(1), pages 21-41, February.
    6. LIANG, Jingmin & CHEN, Jiayu & TONG, De & LI, Xin, 2022. "Planning control over rural land transformation in Hong Kong: A remote sensing analysis of spatio-temporal land use change patterns," Land Use Policy, Elsevier, vol. 119(C).
    7. Mustafa Mokrech & Robert J Nicholls & Richard J Dawson, 2012. "Scenarios of Future Built Environment for Coastal Risk Assessment of Climate Change Using a GIS-Based Multicriteria Analysis," Environment and Planning B, , vol. 39(1), pages 120-136, February.
    8. Pilehforooshha, Parastoo & Karimi, Mohammad & Taleai, Mohammad, 2014. "A GIS-based agricultural land-use allocation model coupling increase and decrease in land demand," Agricultural Systems, Elsevier, vol. 130(C), pages 116-125.
    9. Changgang Ma & Min Zhou, 2018. "A GIS-Based Interval Fuzzy Linear Programming for Optimal Land Resource Allocation at a City Scale," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 143-166, January.
    10. Eoin O’Neill & Michael Brennan & Finbarr Brereton & Harutyun Shahumyan, 2015. "Exploring a spatial statistical approach to quantify flood risk perception using cognitive maps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1573-1601, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:39:y:2012:i:2:p:213-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.