IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v36y2009i5p787-801.html
   My bibliography  Save this article

Agent-Based Model Validation Using Bayesian Networks and Vector Spatial Data

Author

Listed:
  • Verda Kocabas
  • Suzana Dragicevic

Abstract

Validation of agent-based models (ABMs) of land-use change is a significant challenge in current spatial-modelling research and application. During the validation process, model performance and accuracy assessment depend mostly on pixel-by-pixel comparisons. However, in urban land-use planning problems the use of vector spatial data to develop ABMs is becoming more necessary. Hence, improved and robust validation approaches are required for vector-based ABMs. This study presents a novel validation approach for an ABM using vector-based geographic information system and Bayesian networks. The approach creates a unique-polygons map and an object-oriented database. Three indicator variables are calculated to assess the probability of agreement. The indicator variables are nodes in a Bayesian network that is used to evaluate the final agreement of each unique polygon. Further, an index of overall agreement is calculated. The approach was applied to a simulation outcome map generated by an existing Bayesian network-based agent-system (BNAS) model. The BNAS model simulation of land-use change for the year 2001 was compared with the actual land-use change for the same year using the proposed validation approach. The results obtained indicate that significant agreement between the maps was achieved. The approach is well suited for validating vector-based ABMs and can be used as an aid in model designs for improved model performance.

Suggested Citation

  • Verda Kocabas & Suzana Dragicevic, 2009. "Agent-Based Model Validation Using Bayesian Networks and Vector Spatial Data," Environment and Planning B, , vol. 36(5), pages 787-801, October.
  • Handle: RePEc:sae:envirb:v:36:y:2009:i:5:p:787-801
    DOI: 10.1068/b34143t
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b34143t
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b34143t?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, April.
    2. David O'Sullivan & Mordechai Haklay, 2000. "Agent-Based Models and Individualism: Is the World Agent-Based?," Environment and Planning A, , vol. 32(8), pages 1409-1425, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mordechai Haklay & David O'Sullivan & Mark Thurstain-Goodwin & Thorsten Schelhorn, 2001. "“So Go Downtown†: Simulating Pedestrian Movement in Town Centres," Environment and Planning B, , vol. 28(3), pages 343-359, June.
    2. Burton Lucy & Johnson Shane D. & Braithwaite Alex, 2017. "Potential uses of Numerical Simulation for the Modelling of Civil Conflict," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 23(1), pages 1-39, January.
    3. David O'Sullivan, 2009. "Changing Neighborhoods—Neighborhoods Changing," Sociological Methods & Research, , vol. 37(4), pages 498-530, May.
    4. Peter A Johnson & Renee E Sieber, 2011. "Negotiating Constraints to the Adoption of Agent-Based Modeling in Tourism Planning," Environment and Planning B, , vol. 38(2), pages 307-321, April.
    5. Luís de Sousa & Alberto Rodrigues da Silva, 2015. "Showcasing a Domain Specific Language for Spatial Simulation Scenarios with case studies," ERSA conference papers ersa15p1044, European Regional Science Association.
    6. Eugenio Caverzasi & Antoine Godin, 2013. "Stock-flow Consistent Modeling through the Ages," Economics Working Paper Archive wp_745, Levy Economics Institute.
    7. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    8. Michael J. Radzicki, 2003. "Mr. Hamilton, Mr. Forrester, and a Foundation for Evolutionary Economics," Journal of Economic Issues, Taylor & Francis Journals, vol. 37(1), pages 133-173, March.
    9. Kazuya Yamamoto, 2015. "Mobilization, Flexibility of Identity, and Ethnic Cleavage," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-8.
    10. Dirk Helbing & Thomas U. Grund, 2013. "Editorial: Agent-Based Modeling And Techno-Social Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(04n05), pages 1-3.
    11. Ross Richardson & Matteo G. Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," LABORatorio R. Revelli Working Papers Series 142, LABORatorio R. Revelli, Centre for Employment Studies.
    12. Roberto Veneziani & Luca Zamparelli & Michalis Nikiforos & Gennaro Zezza, 2017. "Stock-Flow Consistent Macroeconomic Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1204-1239, December.
    13. Cincotti, Silvano & Raberto, Marco & Teglio, Andrea, 2010. "Credit money and macroeconomic instability in the agent-based model and simulator Eurace," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-32.
    14. Khalil, Elias L., 2010. "The Bayesian fallacy: Distinguishing internal motivations and religious beliefs from other beliefs," Journal of Economic Behavior & Organization, Elsevier, vol. 75(2), pages 268-280, August.
    15. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    16. Juan Manuel Larrosa, 2016. "Agentes computacionales y análisis económico," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 18(34), pages 87-113, January-J.
    17. Joshua M. Epstein, 2007. "Agent-Based Computational Models and Generative Social Science," Introductory Chapters, in: Generative Social Science Studies in Agent-Based Computational Modeling, Princeton University Press.
    18. Rich, Karl M. & Ross, R. Brent & Baker, A. Derek & Negassa, Asfaw, 2011. "Quantifying value chain analysis in the context of livestock systems in developing countries," Food Policy, Elsevier, vol. 36(2), pages 214-222, April.
    19. Ugo Merlone & Daren Sandbank & Ferenc Szidarovszky, 2013. "Equilibria analysis in social dilemma games with Skinnerian agents," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 12(2), pages 219-233, November.
    20. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:36:y:2009:i:5:p:787-801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.