IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v29y2002i4p473-490.html
   My bibliography  Save this article

Encoding Natural Movement as an Agent-Based System: An Investigation into Human Pedestrian Behaviour in the Built Environment

Author

Listed:
  • Alasdair Turner
  • Alan Penn

Abstract

Gibson's ecological theory of perception has received considerable attention within psychology literature, as well as in computer vision and robotics. However, few have applied Gibson's approach to agent-based models of human movement, because the ecological theory requires that individuals have a vision-based mental model of the world, and for large numbers of agents this becomes extremely expensive computationally. Thus, within current pedestrian models, path evaluation is based on calibration from observed data or on sophisticated but deterministic route-choice mechanisms; there is little open-ended behavioural modelling of human-movement patterns. One solution which allows individuals rapid concurrent access to the visual information within an environment is an ‘exosomatic visual architecture’, where the connections between mutually visible locations within a configuration are prestored in a lookup table. Here we demonstrate that, with the aid of an exosomatic visual architecture, it is possible to develop behavioural models in which movement rules originating from Gibson's principle of affordance are utilised. We apply large numbers of agents programmed with these rules to a built-environment example and show that, by varying parameters such as destination selection, field of view, and steps taken between decision points, it is possible to generate aggregate movement levels very similar to those found in an actual building context.

Suggested Citation

  • Alasdair Turner & Alan Penn, 2002. "Encoding Natural Movement as an Agent-Based System: An Investigation into Human Pedestrian Behaviour in the Built Environment," Environment and Planning B, , vol. 29(4), pages 473-490, August.
  • Handle: RePEc:sae:envirb:v:29:y:2002:i:4:p:473-490
    DOI: 10.1068/b12850
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b12850
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b12850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Golledge, Reginald G., 1995. "Path Selection and Route Preference in Human Navigation: A Progress Report," University of California Transportation Center, Working Papers qt9jn5r27v, University of California Transportation Center.
    2. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, April.
    3. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kayvan Karimi, 2018. "Space syntax: consolidation and transformation of an urban research field," Journal of Urban Design, Taylor & Francis Journals, vol. 23(1), pages 1-4, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luís de Sousa & Alberto Rodrigues da Silva, 2015. "Showcasing a Domain Specific Language for Spatial Simulation Scenarios with case studies," ERSA conference papers ersa15p1044, European Regional Science Association.
    2. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    3. Ross Richardson & Matteo G. Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," LABORatorio R. Revelli Working Papers Series 142, LABORatorio R. Revelli, Centre for Employment Studies.
    4. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    5. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    6. Cincotti, Silvano & Raberto, Marco & Teglio, Andrea, 2010. "Credit money and macroeconomic instability in the agent-based model and simulator Eurace," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-32.
    7. Joshua M. Epstein, 2007. "Agent-Based Computational Models and Generative Social Science," Introductory Chapters, in: Generative Social Science Studies in Agent-Based Computational Modeling, Princeton University Press.
    8. Rich, Karl M. & Ross, R. Brent & Baker, A. Derek & Negassa, Asfaw, 2011. "Quantifying value chain analysis in the context of livestock systems in developing countries," Food Policy, Elsevier, vol. 36(2), pages 214-222, April.
    9. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    10. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    11. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Yanuar Nugroho & Gindo Tampubolon, 2008. "Network Dynamics in the Transition to Democracy: Mapping Global Networks of Contemporary Indonesian Civil Society," Sociological Research Online, , vol. 13(5), pages 144-160, September.
    13. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    14. Barr, Jason & Saraceno, Francesco, 2009. "Organization, learning and cooperation," Journal of Economic Behavior & Organization, Elsevier, vol. 70(1-2), pages 39-53, May.
    15. Sheri M. Markose, 2005. "Computability and Evolutionary Complexity: Markets as Complex Adaptive Systems (CAS)," Economic Journal, Royal Economic Society, vol. 115(504), pages 159-192, 06.
    16. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    17. Nannen, Volker & van den Bergh, Jeroen C. J. M. & Eiben, A. E., 2008. "Impact of Environmental Dynamics on Economic Evolution: Uncertainty, Risk Aversion, and Policy," MPRA Paper 13834, University Library of Munich, Germany.
    18. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    19. G. Fagiolo & G. Dosi & R. Gabriele, 2004. "Matching, Bargaining, And Wage Setting In An Evolutionary Model Of Labor Market And Output Dynamics," World Scientific Book Chapters, in: Roberto Leombruni & Matteo Richiardi (ed.), Industry And Labor Dynamics The Agent-Based Computational Economics Approach, chapter 5, pages 59-89, World Scientific Publishing Co. Pte. Ltd..
    20. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:29:y:2002:i:4:p:473-490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.