IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v3y1992i4p401-416.html
   My bibliography  Save this article

A Multi Fuelled Cyclone Combustor

Author

Listed:
  • T. O'Doherty
  • D.J. Morgan
  • N. Syred

Abstract

The paper outlines a series of tests carried out on a prototype 1.5 MW vertical cyclone combustor with integral ash removal which removes in excess of 80% of the ash. For high calorific value fuels such as coal the system is run fuel rich to avoid slagging. The low calorific value exhaust gases are passed via a transfer duct into an inverted swirl burner/furnace arrangement where final burnout of the gasified products occur. The sytem, designed to utilise a wide range of solid fuels was evaluated for a range of biomass materials and coal. The coal work investigated the effects of crushed (d m ≃ 250 μm) and pulverised (d m ≃ 70–80 μm) bituminous coals on system performance whilst biomass trials investigated the effects of chopped straw, chicken litter, shredded paper and refuse derived fuels. The fuel and air were premixed and fired tangentially in all cases into the primary combustor. The combustor was operated over a range of mixture ratios (φ) from fuel rich (φ = 0.5) to fuel lean (φ = 2.0) with temperatures in the order of 1250°C, hence operated in a non-slagging mode. The whole system was operated with a minimum of secondary air, required only to burn the gasified products from the primary chamber. The trials included monitoring of exhaust gases for a range of emissions. In addition, isokinetic sampling of the exhaust gases was carried out to determine particulate emission levels. Results show that best fuel burnout is achieved with biomass material levels better than 99% being achieved. Satisfactory performance was achieved with coal, (ash retention emissions) with fuel burnout in the order of 80%. Ash retention values for the biomass materials was in excess of 80% up to 98%. Coal ash retention levels were lower when analysed on a mass balance basis but of the same order when considering particulate emissions.

Suggested Citation

  • T. O'Doherty & D.J. Morgan & N. Syred, 1992. "A Multi Fuelled Cyclone Combustor," Energy & Environment, , vol. 3(4), pages 401-416, June.
  • Handle: RePEc:sae:engenv:v:3:y:1992:i:4:p:401-416
    DOI: 10.1177/0958305X9200300405
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X9200300405
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X9200300405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:3:y:1992:i:4:p:401-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.