IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v35y2024i4p1936-1966.html
   My bibliography  Save this article

Techno-economic feasibility analysis of grid-connected residential PV systems in Algeria

Author

Listed:
  • Ghania Mohand Kaci
  • Achour Mahrane
  • Kaci Ghedamsi
  • Madjid Chikh

Abstract

Small-scale photovoltaic (PV) power systems have been proven to be successful in generating electricity, conserving fossil fuels, and reducing greenhouse gas emissions in the residential sector, which is one of the largest consumers of energy. In Algeria, to reduce energy consumption in this sector, the authorities are considering implementing a policy that would encourage grid-connected residential PV systems. This paper presents a techno-economic assessment of grid-connected residential PV systems in four climate zones in Algeria. This work was performed using HOMER software for two different PV system configurations, grid/PV and grid/PV/battery. The technical performances of the considered systems were evaluated through the assessment of the self-consumption and self-sufficiency, while the net present value (NPV), internal rate of return (IRR), profitability index (PI), and discounted payback period (DPBP) were used to determine their feasibility. A sensitivity analysis was carried out to evaluate the effects of feed-in tariff (FiT), battery costs, and PV array capacity on the profitability of the systems. The results revealed that the grid/PV systems are technically and economically feasible in all of the four climate zones. For the grid/PV/battery systems, the grant of battery costs and the development of a regional FiT system are recommended. This article provides a tool for policymakers to assess the technical and financial performance of residential solar PV systems to develop adequate policy supports and tariff structures for Algeria.

Suggested Citation

  • Ghania Mohand Kaci & Achour Mahrane & Kaci Ghedamsi & Madjid Chikh, 2024. "Techno-economic feasibility analysis of grid-connected residential PV systems in Algeria," Energy & Environment, , vol. 35(4), pages 1936-1966, June.
  • Handle: RePEc:sae:engenv:v:35:y:2024:i:4:p:1936-1966
    DOI: 10.1177/0958305X221146953
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X221146953
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X221146953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Esplin, Ryan & Nelson, Tim, 2022. "Redirecting solar feed in tariffs to residential battery storage: Would it be worth it?," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 373-389.
    2. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    3. Pi-Chuan Sun & Hsueh-Mei Wang & Hsien-Long Huang & Chien-Wei Ho, 2020. "Consumer attitude and purchase intention toward rooftop photovoltaic installation: The roles of personal trait, psychological benefit, and government incentives," Energy & Environment, , vol. 31(1), pages 21-39, February.
    4. Jinwoo Bae & Soojung Lee & Heetae Kim, 2021. "Comparative study on the economic feasibility of nanogrid and microgrid electrification: The case of Jeju Island, South Korea," Energy & Environment, , vol. 32(1), pages 168-188, February.
    5. Numbi, B.P. & Malinga, S.J., 2017. "Optimal energy cost and economic analysis of a residential grid-interactive solar PV system- case of eThekwini municipality in South Africa," Applied Energy, Elsevier, vol. 186(P1), pages 28-45.
    6. Antonio Gagliano & Francesco Nocera & Giuseppe Tina, 2020. "Performances and economic analysis of small photovoltaic–electricity energy storage system for residential applications," Energy & Environment, , vol. 31(1), pages 155-175, February.
    7. Ramirez Camargo, Luis & Nitsch, Felix & Gruber, Katharina & Dorner, Wolfgang, 2018. "Electricity self-sufficiency of single-family houses in Germany and the Czech Republic," Applied Energy, Elsevier, vol. 228(C), pages 902-915.
    8. Aghamolaei, Reihaneh & Shamsi, Mohammad Haris & O’Donnell, James, 2020. "Feasibility analysis of community-based PV systems for residential districts: A comparison of on-site centralized and distributed PV installations," Renewable Energy, Elsevier, vol. 157(C), pages 793-808.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Ta Tsai & Teketay Mulu Beza & Wei-Bin Wu & Cheng-Chien Kuo, 2019. "Optimal Configuration with Capacity Analysis of a Hybrid Renewable Energy and Storage System for an Island Application," Energies, MDPI, vol. 13(1), pages 1-28, December.
    2. Zheng, Bingle & Wu, Xiao, 2022. "Integrated capacity configuration and control optimization of off-grid multiple energy system for transient performance improvement," Applied Energy, Elsevier, vol. 311(C).
    3. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    4. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    5. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    6. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    7. Lin, Xiajing & Huang, Guohe & Zhou, Xiong & Zhai, Yuanyuan, 2023. "An inexact fractional multi-stage programming (IFMSP) method for planning renewable electric power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Xin Shen & Xun Cao & Sonia Sadeghian Esfahani & Tayyaba Saleem, 2022. "Factors Influencing Consumers’ Purchase Intention on Cold Chain Aquatic Products under COVID-19: An Investigation in China," IJERPH, MDPI, vol. 19(8), pages 1-14, April.
    9. Małgorzata Rutkowska & Paweł Bartoszczuk & Uma Shankar Singh, 2021. "Management of Green Consumer Values in Renewable Energy Sources and Eco Innovation in India," Energies, MDPI, vol. 14(21), pages 1-17, October.
    10. Olawale Fatoki, 2022. "Determinants of Intention to Purchase Photovoltaic Panel System: An Integration of Technology Acceptance Model and Theory of Planned Behaviour," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 432-440, May.
    11. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    12. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.
    13. Fabian Scheller & Isabel Doser & Emily Schulte & Simon Johanning & Russell McKenna & Thomas Bruckner, 2021. "Stakeholder dynamics in residential solar energy adoption: findings from focus group discussions in Germany," Papers 2104.14240, arXiv.org.
    14. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    15. Bilir, Levent & Yildirim, Nurdan, 2018. "Modeling and performance analysis of a hybrid system for a residential application," Energy, Elsevier, vol. 163(C), pages 555-569.
    16. Abraham Alem Kebede & Maitane Berecibar & Thierry Coosemans & Maarten Messagie & Towfik Jemal & Henok Ayele Behabtu & Joeri Van Mierlo, 2020. "A Techno-Economic Optimization and Performance Assessment of a 10 kW P Photovoltaic Grid-Connected System," Sustainability, MDPI, vol. 12(18), pages 1-29, September.
    17. Nolan, Tahlia, 2024. "Is pivoting offshore the right policy for achieving decarbonisation in the state of Victoria, Australia's electricity sector?," Energy Policy, Elsevier, vol. 190(C).
    18. Sarker, M.R.I. & Mandal, Soumya & Tuly, Sumaiya Sadika, 2018. "Numerical study on the influence of vortex flow and recirculating flow into a solid particle solar receiver," Renewable Energy, Elsevier, vol. 129(PA), pages 409-418.
    19. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    20. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:35:y:2024:i:4:p:1936-1966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.