IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v34y2023i7p2432-2453.html
   My bibliography  Save this article

Energetic, exergetic analysis and machine learning of methane chlorination process for methyl chloride production

Author

Listed:
  • Raju Gollangi
  • K Nagamalleswara Rao

Abstract

Nowadays, with the growing demand for energy and effective utilization of various available sources with the exorable techniques and approaches to maximize the efficiency of energy systems. This work has developed the synthesis of Methyl chloride (MC) from the methane chlorination process using the ASPEN HYSYS simulation tool. A Searchable analysis has been done on thermodynamic derivatives (likely Energy, Exergy) to probation on the entire process. This analysis calculates all process components’ energy loss, destruction and energy, and exergy efficiencies. A heavier energy loss has been found at Reactor (ERV) with 1785.5 kW and exergy destruction of 18.8% share. Heat Exchanger Network (HEN) has energy loss (960.32kW) & exergy destruction (791.29kW). The proposed new retrofit sustainable model recovered the waste heat from the HEN and achieved energy efficiency of 87.6% and exergy efficiency of 87.3% of the total MC process. Four Machine learning models were developed for the reactor (ERV) process to predict exergy destruction. The artificial Neural network (ANN) gave good testing predictions, followed by the Random Forest (RF) with a determination coefficient (R 2 ) of 0.999957 and 0.999981.

Suggested Citation

  • Raju Gollangi & K Nagamalleswara Rao, 2023. "Energetic, exergetic analysis and machine learning of methane chlorination process for methyl chloride production," Energy & Environment, , vol. 34(7), pages 2432-2453, November.
  • Handle: RePEc:sae:engenv:v:34:y:2023:i:7:p:2432-2453
    DOI: 10.1177/0958305X221109604
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X221109604
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X221109604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach," Energy, Elsevier, vol. 137(C), pages 234-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonid Tovazhnyanskyy & Jiří Jaromir Klemeš & Petro Kapustenko & Olga Arsenyeva & Olexandr Perevertaylenko & Pavlo Arsenyev, 2020. "Optimal Design of Welded Plate Heat Exchanger for Ammonia Synthesis Column: An Experimental Study with Mathematical Optimisation," Energies, MDPI, vol. 13(11), pages 1-18, June.
    2. Gollangi, Raju & K, NagamalleswaraRao, 2022. "Energy, exergy analysis of conceptually designed monochloromethane production process from hydrochlorination of methanol," Energy, Elsevier, vol. 239(PA).
    3. Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2023. "Ammonia from solid fuels: A cost-effective route to energy security with negative CO2 emissions," Energy, Elsevier, vol. 278(PA).
    4. Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2024. "Techno-economic assessment of integrated NH3-power co-production with CCS and energy storage in an LNG regasification terminal," Applied Energy, Elsevier, vol. 356(C).
    5. Pascal Koschwitz & Chiara Anfosso & Rafael Eduardo Guedéz Mata & Daria Bellotti & Leon Roß & José Angel García & Jochen Ströhle & Bernd Epple, 2024. "Optimal Operation of a Novel Small-Scale Power-to-Ammonia Cycle under Possible Disturbances and Fluctuations in Electricity Prices," Energies, MDPI, vol. 17(16), pages 1-26, August.
    6. Hossein Ali Yousefi Rizi & Donghoon Shin, 2022. "Green Hydrogen Production Technologies from Ammonia Cracking," Energies, MDPI, vol. 15(21), pages 1-49, November.
    7. Ayaz, S.Kagan & Altuntas, Onder & Caliskan, Hakan, 2021. "Enhanced life cycle modelling of a micro gas turbine fuelled with various fuels for sustainable electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Verleysen, Kevin & Parente, Alessandro & Contino, Francesco, 2021. "How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)," Energy, Elsevier, vol. 232(C).
    9. Flórez-Orrego, Daniel & Henriques, Izabela B. & Nguyen, Tuong-Van & Mendes da Silva, Julio A. & Keutenedjian Mady, Carlos E. & Pellegrini, Luiz Felipe & Gandolfi, Ricardo & Velasquez, Hector I. & Burb, 2018. "The contributions of Prof. Jan Szargut to the exergy and environmental assessment of complex energy systems," Energy, Elsevier, vol. 161(C), pages 482-492.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:34:y:2023:i:7:p:2432-2453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.