IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v34y2023i2p359-378.html
   My bibliography  Save this article

How solar-based renewable energy contributes to CO2 emissions abatement? Sustainable environment policy implications for solar industry

Author

Listed:
  • Lei Zhu
  • Wei Fang
  • Saif Ur Rahman
  • Ahmad Imran Khan

Abstract

Renewable energy sources are gaining popularity because they are less expensive and more efficient than traditional energy sources. Using data from 1991 to 2018, we examined the asymmetric impact of solar energy consumption on CO 2 emissions in the top-ten solar energy-consumer economies (China, the United States, Japan, Germany, India, Italy, Australia, Vietnam, South Korea, and Spain). Earlier research has used a panel data technique, which has produced consistent conclusions on the solar power–CO 2 emissions association, despite the fact that some economies have no evidence of such a linkage. The current study, on the other hand, employs a unique methodology known as “quantile-on-quantile,†which can evaluate time-series dependence in each economy separately to give world yet country-related information for the association among the variables. The findings investigate how quantiles of solar energy consumption quantiles influence CO 2 emissions quantiles asymmetrically by giving an appropriate structure to apprehend the whole dependency pattern. The results suggest that, except in Spain and India, solar energy consumption minimizes carbon dioxide emissions at various quantiles. However, the strength of nonlinear association in solar energy–CO 2 emissions nexus varies from country to country that needs individual attention and caution for governments in developing the policies related to the solar industry and the sustainable environment.

Suggested Citation

  • Lei Zhu & Wei Fang & Saif Ur Rahman & Ahmad Imran Khan, 2023. "How solar-based renewable energy contributes to CO2 emissions abatement? Sustainable environment policy implications for solar industry," Energy & Environment, , vol. 34(2), pages 359-378, March.
  • Handle: RePEc:sae:engenv:v:34:y:2023:i:2:p:359-378
    DOI: 10.1177/0958305X211061886
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211061886
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211061886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiao, Zhijie, 2009. "Quantile cointegrating regression," Journal of Econometrics, Elsevier, vol. 150(2), pages 248-260, June.
    2. Al-mulali, Usama & Solarin, Sakiru Adebola & Sheau-Ting, Low & Ozturk, Ilhan, 2016. "Does moving towards renewable energy causes water and land inefficiency? An empirical investigation," Energy Policy, Elsevier, vol. 93(C), pages 303-314.
    3. Shahbaz, Muhammad & Zakaria, Muhammad & Shahzad, Syed Jawad Hussain & Mahalik, Mantu Kumar, 2018. "The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach," Energy Economics, Elsevier, vol. 71(C), pages 282-301.
    4. Sadorsky, Perry, 2009. "Renewable energy consumption, CO2 emissions and oil prices in the G7 countries," Energy Economics, Elsevier, vol. 31(3), pages 456-462, May.
    5. Lin, Boqiang & Moubarak, Mohamed, 2014. "Renewable energy consumption – Economic growth nexus for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 111-117.
    6. Apergis, Nicholas & Ben Jebli, Mehdi & Ben Youssef, Slim, 2018. "Does renewable energy consumption and health expenditures decrease carbon dioxide emissions? Evidence for sub-Saharan Africa countries," Renewable Energy, Elsevier, vol. 127(C), pages 1011-1016.
    7. Bilgili, Faik, 2012. "The impact of biomass consumption on CO2 emissions: Cointegration analyses with regime shifts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5349-5354.
    8. Bashir, Muhammad Farhan & MA, Benjiang & Shahbaz, Muhammad & Shahzad, Umer & Vo, Xuan Vinh, 2021. "Unveiling the heterogeneous impacts of environmental taxes on energy consumption and energy intensity: Empirical evidence from OECD countries," Energy, Elsevier, vol. 226(C).
    9. Michaja Pehl & Anders Arvesen & Florian Humpenöder & Alexander Popp & Edgar G. Hertwich & Gunnar Luderer, 2017. "Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling," Nature Energy, Nature, vol. 2(12), pages 939-945, December.
    10. Sajid Ali & Zulkornain Yusop & Shivee Ranjanee Kaliappan & Lee Chin & Raima Nazar, 2021. "Asymmetric openness-growth nexus in 20 highly open OIC countries: Evidence from quantile-on-quantile regression approach," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 30(6), pages 882-905, August.
    11. Apergis, Nicholas & Payne, James E., 2014. "Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model," Energy Economics, Elsevier, vol. 42(C), pages 226-232.
    12. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    13. Jaforullah, Mohammad & King, Alan, 2015. "Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence," Energy Economics, Elsevier, vol. 49(C), pages 711-717.
    14. Pueyo, Ana, 2018. "What constrains renewable energy investment in Sub-Saharan Africa? A comparison of Kenya and Ghana," World Development, Elsevier, vol. 109(C), pages 85-100.
    15. Destek, Mehmet Akif & Aslan, Alper, 2020. "Disaggregated renewable energy consumption and environmental pollution nexus in G-7 countries," Renewable Energy, Elsevier, vol. 151(C), pages 1298-1306.
    16. Chen, Yulong & Zhao, Jincai & Lai, Zhizhu & Wang, Zheng & Xia, Haibin, 2019. "Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis," Renewable Energy, Elsevier, vol. 140(C), pages 341-353.
    17. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    18. Mo, Bin & Chen, Cuiqiong & Nie, He & Jiang, Yonghong, 2019. "Visiting effects of crude oil price on economic growth in BRICS countries: Fresh evidence from wavelet-based quantile-on-quantile tests," Energy, Elsevier, vol. 178(C), pages 234-251.
    19. Chang, Bisharat Hussain & Sharif, Arshian & Aman, Ameenullah & Suki, Norazah Mohd & Salman, Asma & Khan, Syed Abdul Rehman, 2020. "The asymmetric effects of oil price on sectoral Islamic stocks: New evidence from quantile-on-quantile regression approach," Resources Policy, Elsevier, vol. 65(C).
    20. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions," Renewable Energy, Elsevier, vol. 167(C), pages 99-115.
    21. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jinna & Saydaliev, Hayot Berk & Liu, Zhen & Nazar, Raima & Ali, Sajid, 2022. "The asymmetric nexus of solar energy and environmental quality: Evidence from Top-10 solar energy-consuming countries," Energy, Elsevier, vol. 247(C).
    2. Yu, Jinna & Tang, Yuk Ming & Chau, Ka Yin & Nazar, Raima & Ali, Sajid & Iqbal, Wasim, 2022. "Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation," Renewable Energy, Elsevier, vol. 182(C), pages 216-226.
    3. Liu, Zhen & Saydaliev, Hayot Berk & Lan, Jing & Ali, Sajid & Anser, Muhammad Khalid, 2022. "Assessing the effectiveness of biomass energy in mitigating CO2 emissions: Evidence from Top-10 biomass energy consumer countries," Renewable Energy, Elsevier, vol. 191(C), pages 842-851.
    4. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2020. "The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach," Renewable Energy, Elsevier, vol. 150(C), pages 670-690.
    5. Adewuyi, Adeolu O. & Awodumi, Olabanji B., 2017. "Renewable and non-renewable energy-growth-emissions linkages: Review of emerging trends with policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 275-291.
    6. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    7. Dong, Kangyin & Sun, Renjin & Hochman, Gal, 2017. "Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries," Energy, Elsevier, vol. 141(C), pages 1466-1478.
    8. Kahia, Montassar & Aïssa, Mohamed Safouane Ben & Lanouar, Charfeddine, 2017. "Renewable and non-renewable energy use - economic growth nexus: The case of MENA Net Oil Importing Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 127-140.
    9. Adewuyi, Adeolu O. & Awodumi, Olabanji B., 2017. "Biomass energy consumption, economic growth and carbon emissions: Fresh evidence from West Africa using a simultaneous equation model," Energy, Elsevier, vol. 119(C), pages 453-471.
    10. Aslan, Alper, 2016. "The causal relationship between biomass energy use and economic growth in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 362-366.
    11. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "Output, renewable and non-renewable energy consumption and international trade: Evidence from a panel of 69 countries," Renewable Energy, Elsevier, vol. 83(C), pages 799-808.
    12. Mishra, Shekhar & Sharif, Arshian & Khuntia, Sashikanta & Meo, Muhammad Saeed & Rehman Khan, Syed Abdul, 2019. "Does oil prices impede Islamic stock indices? Fresh insights from wavelet-based quantile-on-quantile approach," Resources Policy, Elsevier, vol. 62(C), pages 292-304.
    13. Oluwatoyin Abidemi Somoye & Mehdi Seraj & Huseyin Ozdeser & Muhammad Mar’I, 2023. "Quantile relationship between financial development, income, price, CO2 emissions and renewable energy consumption: evidence from Nigeria," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-25, December.
    14. Ben Jebli, Mehdi & Ben Youssef, Slim, 2013. "Economic growth, combustible renewables and waste consumption and emissions in North Africa," MPRA Paper 47765, University Library of Munich, Germany.
    15. Anh The Vo & Duc Hong Vo & Quan Thai-Thuong Le, 2019. "CO 2 Emissions, Energy Consumption, and Economic Growth: New Evidence in the ASEAN Countries," JRFM, MDPI, vol. 12(3), pages 1-20, September.
    16. Mo, Bin & Nie, He & Zhao, Rongjie, 2024. "Dynamic nonlinear effects of geopolitical risks on commodities: Fresh evidence from quantile methods," Energy, Elsevier, vol. 288(C).
    17. Ben Jebli, Mehdi & Ben Youssef, Slim, 2017. "Renewable energy, arable land, agriculture, CO2 emissions, and economic growth in Morocco," MPRA Paper 76798, University Library of Munich, Germany.
    18. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions," Renewable Energy, Elsevier, vol. 167(C), pages 99-115.
    19. Assi, Ala Fathi & Zhakanova Isiksal, Aliya & Tursoy, Turgut, 2021. "Renewable energy consumption, financial development, environmental pollution, and innovations in the ASEAN + 3 group: Evidence from (P-ARDL) model," Renewable Energy, Elsevier, vol. 165(P1), pages 689-700.
    20. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:34:y:2023:i:2:p:359-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.