IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v33y2022i8p1583-1612.html
   My bibliography  Save this article

A comparative performance of machine learning algorithm to predict electric vehicles energy consumption: A path towards sustainability

Author

Listed:
  • Irfan Ullah
  • Kai Liu
  • Toshiyuki Yamamoto
  • Rabia Emhamed Al Mamlook
  • Arshad Jamal

Abstract

The rapid growth of transportation sector and related emissions are attracting the attention of policymakers to ensure environmental sustainability. Therefore, the deriving factors of transport emissions are extremely important to comprehend. The role of electric vehicles is imperative amid rising transport emissions. Electric vehicles pave the way towards a low-carbon economy and sustainable environment. Successful deployment of electric vehicles relies heavily on energy consumption models that can predict energy consumption efficiently and reliably. Improving electric vehicles’ energy consumption efficiency will significantly help to alleviate driver anxiety and provide an essential framework for operation, planning, and management of the charging infrastructure. To tackle the challenge of electric vehicles’ energy consumption prediction, this study aims to employ advanced machine learning models, extreme gradient boosting, and light gradient boosting machine to compare with traditional machine learning models, multiple linear regression, and artificial neural network. Electric vehicles energy consumption data in the analysis were collected in Aichi Prefecture, Japan. To evaluate the performance of the prediction models, three evaluation metrics were used; coefficient of determination ( R 2 ), root mean square error, and mean absolute error. The prediction outcome exhibits that the extreme gradient boosting and light gradient boosting machine provided better and robust results compared to multiple linear regression and artificial neural network. The models based on extreme gradient boosting and light gradient boosting machine yielded higher values of R 2 , lower mean absolute error, and root mean square error values have proven to be more accurate. However, the results demonstrated that the light gradient boosting machine is outperformed the extreme gradient boosting model. A detailed feature important analysis was carried out to demonstrate the impact and relative influence of different input variables on electric vehicles energy consumption prediction. The results imply that an advanced machine learning model can enhance the prediction performance of electric vehicles energy consumption.

Suggested Citation

  • Irfan Ullah & Kai Liu & Toshiyuki Yamamoto & Rabia Emhamed Al Mamlook & Arshad Jamal, 2022. "A comparative performance of machine learning algorithm to predict electric vehicles energy consumption: A path towards sustainability," Energy & Environment, , vol. 33(8), pages 1583-1612, December.
  • Handle: RePEc:sae:engenv:v:33:y:2022:i:8:p:1583-1612
    DOI: 10.1177/0958305X211044998
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211044998
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211044998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:33:y:2022:i:8:p:1583-1612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.