IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v30y2019i3p462-480.html
   My bibliography  Save this article

Assessment of optimal location for a centralized biogas upgrading facility

Author

Listed:
  • Valerii Havrysh
  • Vitalii Nitsenko
  • Yuriy Bilan
  • Dalia Streimikiene

Abstract

Since the 1990s, the volume of biogas produced in the world has been increasing. Biomethane (upgraded biogas) is a more versatile renewable fuel. Biogas transportation from production sites to upgrading facilities induces a scale advantage and an efficiency increase. Therefore, exploration of costs and energy use of biogas transportation using dedicated infrastructure is needed. A mathematical model to determine the optimum location for a certain biogas upgrading plant has been presented. It was developed to describe a local biogas grid that is used to collect biogas from several digesters and to deliver it to a central upgrading point. The model minimizes operational and maintenance costs per volumetric unit of biogas. The results indicate that cooperation between biogas producers in collecting biogas by means of a star layout reduces the cost of biomethane production (investment costs by 22.4–24.8% and operating and maintenance costs by 1.7–10.9% ) relative to using a decentralized method. Merging smaller digesters into a smaller number of larger biogas upgrading plants reduces the biomethane production costs for the same biogas volume source.

Suggested Citation

  • Valerii Havrysh & Vitalii Nitsenko & Yuriy Bilan & Dalia Streimikiene, 2019. "Assessment of optimal location for a centralized biogas upgrading facility," Energy & Environment, , vol. 30(3), pages 462-480, May.
  • Handle: RePEc:sae:engenv:v:30:y:2019:i:3:p:462-480
    DOI: 10.1177/0958305X18793110
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18793110
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18793110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    2. Bojesen, M. & Birkin, M. & Clarke, G., 2014. "Spatial competition for biogas production using insights from retail location models," Energy, Elsevier, vol. 68(C), pages 617-628.
    3. Gebrezgabher, Solomie A. & Meuwissen, Miranda P.M. & Oude Lansink, Alfons G.J.M., 2010. "Costs of Producing Biogas at Dairy Farms in The Netherlands," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 1(1), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    2. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chinese, D. & Patrizio, P. & Nardin, G., 2014. "Effects of changes in Italian bioenergy promotion schemes for agricultural biogas projects: Insights from a regional optimization model," Energy Policy, Elsevier, vol. 75(C), pages 189-205.
    2. Patrizio, P. & Leduc, S. & Chinese, D. & Dotzauer, E. & Kraxner, F., 2015. "Biomethane as transport fuel – A comparison with other biogas utilization pathways in northern Italy," Applied Energy, Elsevier, vol. 157(C), pages 25-34.
    3. Sarker, Bhaba R. & Wu, Bingqing & Paudel, Krishna P., 2019. "Modeling and optimization of a supply chain of renewable biomass and biogas: Processing plant location," Applied Energy, Elsevier, vol. 239(C), pages 343-355.
    4. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    5. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    6. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    8. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    9. O'Shea, R. & Wall, D.M. & Murphy, J.D., 2017. "An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network," Applied Energy, Elsevier, vol. 208(C), pages 108-122.
    10. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    11. Skovsgaard, Lise & Jacobsen, Henrik Klinge, 2017. "Economies of scale in biogas production and the significance of flexible regulation," Energy Policy, Elsevier, vol. 101(C), pages 77-89.
    12. Martino, Gaetano & Polinori, Paolo & Bufacchi, Marina & Rossetti, Enrica, 2020. "The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates," Renewable Energy, Elsevier, vol. 156(C), pages 526-534.
    13. Arunodaya Raj Mishra & Pratibha Rani & Fausto Cavallaro & Ibrahim M. Hezam, 2023. "An IVIF-Distance Measure and Relative Closeness Coefficient-Based Model for Assessing the Sustainable Development Barriers to Biofuel Enterprises in India," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    14. Mikkel Bojesen & Luc Boerboom & Hans Skov-Petersen, 2014. "Towards a sustainable capacity expansion of the Danish biogas sector," IFRO Working Paper 2014/03, University of Copenhagen, Department of Food and Resource Economics.
    15. Sandipa Bhattacharya & Mitali Sarkar & Biswajit Sarkar & Lakshmi Thangavelu, 2023. "Exploring Sustainability and Economic Growth through Generation of Renewable Energy with Respect to the Dynamical Environment," Mathematics, MDPI, vol. 11(19), pages 1-22, September.
    16. Emenike, Scholastica N. & Falcone, Gioia, 2020. "A review on energy supply chain resilience through optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Reise, Christian & Liebe, Ulf & Musshoff, Oliver, 2012. "Design of substrate supply contracts for biogas plants," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124428, Australian Agricultural and Resource Economics Society.
    18. Wen, Wen & Zhang, Qin, 2015. "A design of straw acquisition mode for China's straw power plant based on supply chain coordination," Renewable Energy, Elsevier, vol. 76(C), pages 369-374.
    19. Wu, Juanjuan & Zhang, Jian & Yi, Weiming & Cai, Hongzhen & Li, Yang & Su, Zhanpeng, 2022. "Agri-biomass supply chain optimization in north China: Model development and application," Energy, Elsevier, vol. 239(PD).
    20. Schillo, R. Sandra & Isabelle, Diane A. & Shakiba, Abtin, 2017. "Linking advanced biofuels policies with stakeholder interests: A method building on Quality Function Deployment," Energy Policy, Elsevier, vol. 100(C), pages 126-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:30:y:2019:i:3:p:462-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.