IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v29y2018i6p968-988.html
   My bibliography  Save this article

Dynamic evolution, spatial spillover effect of technological innovation and haze pollution in China

Author

Listed:
  • Xiaohong Liu

Abstract

This study investigates 30 provinces in China between 2003 and 2014. Kernel density method is used to analyse the dynamic evolution of haze pollution and technological innovation research and development (R&D), while spatial econometric analysis is used to study the impact of technological innovation on the haze pollution. The results show that haze pollution presents global spatial autocorrelation and local spatial cluster in China. China’s haze pollution has a significant spatial dependence and spatial spillover. A disproportion distribution pattern of haze pollution exists among provinces in China: the central region is the most polluted area followed by the western region, the northeast region and the eastern region. The kernel density curve shows that the gap between technology innovations R&D among provinces has expanded year by year. There is a polarization between the technological innovations R&D. Dynamic evolution results showed that during 2003–2012, the kernel density distribution curve of haze pollution showed a leftward shift, indicating that provincial haze pollution decreased gradually. However, the kernel density distribution curve of haze pollution showed a rightward shift in 2014, and the provincial haze pollution increased. During 2003–2012, the gap of haze pollution among different provinces in China gradually narrowed, while in 2014, the gap increased significantly. Spatial econometric results show that the indirect effects and the total effects of technological innovation are significantly negative. Technological innovation can not only reduce the regional haze pollution but also indirectly lead to the decline in the haze pollution of adjacent provinces through the knowledge spillover effect. The increase of population density can effectively reduce the haze pollution. There is an inverted ‘U type’ relationship between economic development and haze pollution. The increase of traffic pressure will aggravate the degree of haze pollution.

Suggested Citation

  • Xiaohong Liu, 2018. "Dynamic evolution, spatial spillover effect of technological innovation and haze pollution in China," Energy & Environment, , vol. 29(6), pages 968-988, September.
  • Handle: RePEc:sae:engenv:v:29:y:2018:i:6:p:968-988
    DOI: 10.1177/0958305X18765249
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18765249
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18765249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    2. Shi, Qian & Lai, Xiaodong, 2013. "Identifying the underpin of green and low carbon technology innovation research: A literature review from 1994 to 2010," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 839-864.
    3. Matthew A. Cole & Eric Neumayer, 2003. "Examining the Impact of Demographic Factors On Air Pollution," Labor and Demography 0312005, University Library of Munich, Germany, revised 13 May 2004.
    4. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    5. Suri, Vivek & Chapman, Duane, 1998. "Economic growth, trade and energy: implications for the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 25(2), pages 195-208, May.
    6. Sohag, Kazi & Begum, Rawshan Ara & Abdullah, Sharifah Mastura Syed & Jaafar, Mokhtar, 2015. "Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia," Energy, Elsevier, vol. 90(P2), pages 1497-1507.
    7. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charfeddine, Lanouar, 2017. "The impact of energy consumption and economic development on Ecological Footprint and CO2 emissions: Evidence from a Markov Switching Equilibrium Correction Model," Energy Economics, Elsevier, vol. 65(C), pages 355-374.
    2. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    3. Zhimin Zhou, 2019. "The Underground Economy and Carbon Dioxide (CO 2 ) Emissions in China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    4. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2009. "Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol," Ibero America Institute for Econ. Research (IAI) Discussion Papers 190, Ibero-America Institute for Economic Research.
    5. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    6. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    7. Mina Baliamoune-Lutz, 2017. "Trade and Environmental Quality in African Countries: Do Institutions Matter?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 155-172, January.
    8. Florian Grosset & Phu Nguyen Van, 2016. "Consommation d’énergie et croissance économique en Afrique subsaharienne," Mondes en développement, De Boeck Université, vol. 0(4), pages 25-42.
    9. Ameer, Ayesha & Munir, Kashif, 2016. "Effect of Economic Growth, Trade Openness, Urbanization, and Technology on Environment of Selected Asian Countries," MPRA Paper 74571, University Library of Munich, Germany.
    10. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.
    11. Squalli, Jay, 2017. "Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data," Energy, Elsevier, vol. 127(C), pages 479-488.
    12. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla Rosa, 2014. "The causal factors of international inequality in CO2 emissions per capita: A regression-based inequality decomposition analysis," Working Papers wpdea1402, Department of Applied Economics at Universitat Autonoma of Barcelona.
    13. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    14. Shixiang Li & Jianru Shi & Qiaosheng Wu, 2020. "Environmental Kuznets Curve: Empirical Relationship between Energy Consumption and Economic Growth in Upper-Middle-Income Regions of China," IJERPH, MDPI, vol. 17(19), pages 1-27, September.
    15. Tariku, Lamessa, 2015. "The Impact of Trade Liberalization on Air Pollution: In Case of Ethiopia," MPRA Paper 84619, University Library of Munich, Germany.
    16. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    17. Maxwell Chukwudi Udeagha & Nicholas Ngepah, 2022. "Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa," Sustainability, MDPI, vol. 14(16), pages 1-35, August.
    18. Sinha, Avik & Shahbaz, Muhammad & Balsalobre, Daniel, 2017. "Exploring the Relationship between Energy Usage Segregation and Environmental Degradation in N-11 Countries," MPRA Paper 81212, University Library of Munich, Germany, revised 07 Sep 2017.
    19. Pal, Debdatta & Mitra, Subrata Kumar, 2017. "The environmental Kuznets curve for carbon dioxide in India and China: Growth and pollution at crossroad," Journal of Policy Modeling, Elsevier, vol. 39(2), pages 371-385.
    20. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:29:y:2018:i:6:p:968-988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.