IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v26y2015i6-7p1015-1033.html
   My bibliography  Save this article

Special: Theme of Clean Coal How Policy Strategies Affect Clean Coal Technology Innovation in China? A Patent-Based Approach

Author

Listed:
  • Ke Li
  • Boqiang Lin
  • Xiying Liu

Abstract

Achieving coal usage by low-carbon ways through clean technologies could be one of the possible ways to meet the rapid growth of China's energy demand, and also mitigate the environmental deterioration. This paper first presented the important role of coal in China's energy system and the environmental issues caused by coal consumption, and then analyzed the development status of clean coal technologies (CCTs) in China. Then, a structural VAR model is adopted to assess the impacts of coal price, R&D activities and GDP/emissions shocks on CCTs. The results indicate that the unexpected coal price shock and R&D shock could increase the ratio of clean coal patents to energy patents in short term, while a GDP/emissions shock has an opposite effect. However, these effects are not long lasting. Finally, suggestions about coal price and government funds for R&D activities are given so as to promote development of CCTs in China.

Suggested Citation

  • Ke Li & Boqiang Lin & Xiying Liu, 2015. "Special: Theme of Clean Coal How Policy Strategies Affect Clean Coal Technology Innovation in China? A Patent-Based Approach," Energy & Environment, , vol. 26(6-7), pages 1015-1033, November.
  • Handle: RePEc:sae:engenv:v:26:y:2015:i:6-7:p:1015-1033
    DOI: 10.1260/0958-305X.26.6-7.1015
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1260/0958-305X.26.6-7.1015
    Download Restriction: no

    File URL: https://libkey.io/10.1260/0958-305X.26.6-7.1015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lionel Nesta & Francesco Vona & Francesco Nicolli, 2012. "Environmental Policies, Product Market Regulation and Innovation in Renewable Energy," Working Papers 2012.90, Fondazione Eni Enrico Mattei.
    2. Yue, Li, 2012. "Dynamics of clean coal-fired power generation development in China," Energy Policy, Elsevier, vol. 51(C), pages 138-142.
    3. Vanessa Oltra & Rene Kemp & Frans P. De Vries, 2010. "Patents as a measure for eco-innovation," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 13(2), pages 130-148.
    4. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    5. Diaz Arias, Adriana & van Beers, Cees, 2013. "Energy subsidies, structure of electricity prices and technological change of energy use," Energy Economics, Elsevier, vol. 40(C), pages 495-502.
    6. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    7. Margolis, Robert M. & Kammen, Daniel M., 1999. "Evidence of under-investment in energy R&D in the United States and the impact of Federal policy," Energy Policy, Elsevier, vol. 27(10), pages 575-584, October.
    8. Runkle, David E, 2002. "Vector Autoregressions and Reality," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 128-133, January.
    9. Wang, Zhaohua & Yang, Zhongmin & Zhang, Yixiang & Yin, Jianhua, 2012. "Energy technology patents–CO2 emissions nexus: An empirical analysis from China," Energy Policy, Elsevier, vol. 42(C), pages 248-260.
    10. Sonia Ben Kheder & Natalia Zugravu, 2008. "The pollution haven hypothesis: a geographic economy model in a comparative study," Documents de travail du Centre d'Economie de la Sorbonne v08083, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    12. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    13. Zhang, Jianjun & Fu, Meichen & Geng, Yuhuan & Tao, Jin, 2011. "Energy saving and emission reduction: A project of coal-resource integration in Shanxi Province, China," Energy Policy, Elsevier, vol. 39(6), pages 3029-3032, June.
    14. Chen, Qixin & Kang, Chongqing & Xia, Qing & Guan, Dabo, 2011. "Preliminary exploration on low-carbon technology roadmap of China’s power sector," Energy, Elsevier, vol. 36(3), pages 1500-1512.
    15. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    16. Wang, Hao & Nakata, Toshihiko, 2009. "Analysis of the market penetration of clean coal technologies and its impacts in China's electricity sector," Energy Policy, Elsevier, vol. 37(1), pages 338-351, January.
    17. Nick, Sebastian & Thoenes, Stefan, 2014. "What drives natural gas prices? — A structural VAR approach," Energy Economics, Elsevier, vol. 45(C), pages 517-527.
    18. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    19. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    20. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2014. "The optimal time path of clean energy R&D policy when patents have finite lifetime," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 2-19.
    21. Franco, Alessandro & Diaz, Ana R., 2009. "The future challenges for “clean coal technologies”: Joining efficiency increase and pollutant emission control," Energy, Elsevier, vol. 34(3), pages 348-354.
    22. Zhang, Chunhong & Liu, Haiying & Bressers, Hans Th.A. & Buchanan, Karen S., 2011. "Productivity growth and environmental regulations - accounting for undesirable outputs: Analysis of China's thirty provincial regions using the Malmquist–Luenberger index," Ecological Economics, Elsevier, vol. 70(12), pages 2369-2379.
    23. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2014. "How policy choice affects investment in low-carbon technology: The case of CO2 capture in indirect coal liquefaction in China," Energy, Elsevier, vol. 73(C), pages 670-679.
    24. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    25. Popp, David, 2006. "Innovation in climate policy models: Implementing lessons from the economics of R&D," Energy Economics, Elsevier, vol. 28(5-6), pages 596-609, November.
    26. Wong, Chan-Yuan & Fatimah Mohamad, Zeeda & Keng, Zi-Xiang & Ariff Azizan, Suzana, 2014. "Examining the patterns of innovation in low carbon energy science and technology: Publications and patents of Asian emerging economies," Energy Policy, Elsevier, vol. 73(C), pages 789-802.
    27. Chen, Wenying & Xu, Ruina, 2010. "Clean coal technology development in China," Energy Policy, Elsevier, vol. 38(5), pages 2123-2130, May.
    28. Lee, Kyungpyo & Lee, Sungjoo, 2013. "Patterns of technological innovation and evolution in the energy sector: A patent-based approach," Energy Policy, Elsevier, vol. 59(C), pages 415-432.
    29. Nakata, Toshihiko & Sato, Takemi & Wang, Hao & Kusunoki, Tomoya & Furubayashi, Takaaki, 2011. "Modeling technological learning and its application for clean coal technologies in Japan," Applied Energy, Elsevier, vol. 88(1), pages 330-336, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grunevald, Isabel & Kipper, Liane Mahlmann & Ribas Moraes, Jorge Andre & Haupt, Leandro, 2023. "Scientific contributions on cleaner production through the use of patent information: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Li, Ke & Lin, Boqiang, 2016. "Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model," Applied Energy, Elsevier, vol. 168(C), pages 351-363.
    3. Zhen Yu & Weidong Li & Hongyan Duan, 2023. "New Energy Technology Innovation and Industry Carbon Emission Reduction Based on the Perspective of Unbalanced Regional Economic Development," Sustainability, MDPI, vol. 15(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ke & Lin, Boqiang, 2016. "Impact of energy technology patents in China: Evidence from a panel cointegration and error correction model," Energy Policy, Elsevier, vol. 89(C), pages 214-223.
    2. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    3. Zhu, Zhishuang & Liao, Hua & Liu, Li, 2021. "The role of public energy R&D in energy conservation and transition: Experiences from IEA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Li, Ke & Lin, Boqiang, 2017. "An application of a double bootstrap to investigate the effects of technological progress on total-factor energy consumption performance in China," Energy, Elsevier, vol. 128(C), pages 575-585.
    5. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    6. Brian Chi-ang Lin & Siqi Zheng & Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    7. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    8. Maximilian Gasser & Simon Pezzutto & Wolfram Sparber & Eric Wilczynski, 2022. "Public Research and Development Funding for Renewable Energy Technologies in Europe: A Cross-Country Analysis," Sustainability, MDPI, vol. 14(9), pages 1-28, May.
    9. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
    10. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    11. Schleich, Joachim & Walz, Rainer & Ragwitz, Mario, 2017. "Effects of policies on patenting in wind-power technologies," Energy Policy, Elsevier, vol. 108(C), pages 684-695.
    12. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    13. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    14. Palage, Kristoffer & Lundmark, Robert & Söderholm, Patrik, 2019. "The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union," International Journal of Production Economics, Elsevier, vol. 210(C), pages 42-55.
    15. Li, Kai & Yan, Yaxue & Zhang, Xiaoling, 2021. "Carbon-abatement policies, investment preferences, and directed technological change: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    16. Zhang, Gupeng & Duan, Hongbo & Wang, Shouyang & Zhang, Qianlong, 2018. "Comparative technological advantages between China and developed areas in respect of energy production: Quantitative and qualitative measurements based on patents," Energy, Elsevier, vol. 162(C), pages 1223-1233.
    17. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    18. Li, Kai & Qi, Shouzhou & Shi, Xunpeng, 2023. "Environmental policies and low-carbon industrial upgrading: Heterogenous effects among policies, sectors, and technologies in China," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    19. Samant, Shantala & Thakur-Wernz, Pooja & Hatfield, Donald E., 2020. "Does the focus of renewable energy policy impact the nature of innovation? Evidence from emerging economies," Energy Policy, Elsevier, vol. 137(C).
    20. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:26:y:2015:i:6-7:p:1015-1033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.