IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v26y2015i4p587-600.html
   My bibliography  Save this article

On the Dynamics of Generating Electricity from Diversified Sources: Evidence from Portugal

Author

Listed:
  • António Cardoso Marques
  • José Alberto Fuinhas
  • Agostinho Pereira

Abstract

By studying the interaction among wind power, traditional sources including large-hydro (ordinary regime), electricity consumption and electricity exports, the dynamics of generating electricity from diversified sources is the focus of this paper. Data for Portugal with daily frequency, for the time span from July 2007 until December 2012, are used. On the whole, the results confirm that the variables interact with each other (endogeneity). Wind power drives its own path, which is largely the outcome of political decisions. The analysis also suggests that the impact on economic activity is greater from the ordinary regime than from wind power.

Suggested Citation

  • António Cardoso Marques & José Alberto Fuinhas & Agostinho Pereira, 2015. "On the Dynamics of Generating Electricity from Diversified Sources: Evidence from Portugal," Energy & Environment, , vol. 26(4), pages 587-600, August.
  • Handle: RePEc:sae:engenv:v:26:y:2015:i:4:p:587-600
    as

    Download full text from publisher

    File URL: http://eae.sagepub.com/content/26/4/587.abstract
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klinge Jacobsen, Henrik & Zvingilaite, Erika, 2010. "Reducing the market impact of large shares of intermittent energy in Denmark," Energy Policy, Elsevier, vol. 38(7), pages 3403-3413, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    2. Chi-Keung Woo, Ira Horowitz, Brian Horii, Ren Orans, and Jay Zarnikau, 2012. "Blowing in the Wind: Vanishing Payoffs of a Tolling Agreement for Natural-gas-fired Generation of Electricity in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    3. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    4. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    5. Newbery, David, 2021. "National Energy and Climate Plans for the island of Ireland: wind curtailment, interconnectors and storage," Energy Policy, Elsevier, vol. 158(C).
    6. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    7. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    8. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    9. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    10. Darghouth, Naïm R. & Barbose, Galen & Wiser, Ryan H., 2014. "Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering," Energy Policy, Elsevier, vol. 67(C), pages 290-300.
    11. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    12. Alahäivälä, Antti & Heß, Tobias & Cao, Sunliang & Lehtonen, Matti, 2015. "Analyzing the optimal coordination of a residential micro-CHP system with a power sink," Applied Energy, Elsevier, vol. 149(C), pages 326-337.
    13. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    14. David Wozabal & Christoph Graf & David Hirschmann, 2016. "The effect of intermittent renewables on the electricity price variance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 687-709, July.
    15. Brian Rivard and Adonis Yatchew, 2016. "Integration of Renewables into the Ontario Electricity System," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    16. Sousa, Jorge A.M. & Teixeira, Fábio & Faias, Sérgio, 2014. "Impact of a price-maker pumped storage hydro unit on the integration of wind energy in power systems," Energy, Elsevier, vol. 69(C), pages 3-11.
    17. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    18. Hain, Martin & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2017. "An Electricity Price Modeling Framework for Renewable-Dominant Markets," Working Paper Series in Production and Energy 23, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    19. Su, Wencong & Huang, Alex Q., 2014. "A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers," Applied Energy, Elsevier, vol. 119(C), pages 341-350.
    20. Lilian de Menezes & Melanie A. Houllier, 2013. "Modelling Germany´s Energy Transition and its Potential Effect on European Electricity Spot Markets," EcoMod2013 5395, EcoMod.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:26:y:2015:i:4:p:587-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.