IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v21y2010i4p243-262.html
   My bibliography  Save this article

The Stable Stationary Value of the Earth's Global Average Atmospheric Planck-Weighted Greenhouse-Gas Optical Thickness

Author

Listed:
  • Ferenc M. Miskolczi

    (3 Holston Lane, Hampton VA 23664, USA)

Abstract

By the line-by-line method, a computer program is used to analyze Earth atmospheric radiosonde data from hundreds of weather balloon observations. In terms of a quasi-all-sky protocol, fundamental infrared atmospheric radiative flux components are calculated: at the top boundary, the outgoing long wave radiation, the surface transmitted radiation, and the upward atmospheric emittance; at the bottom boundary, the downward atmospheric emittance. The partition of the outgoing long wave radiation into upward atmospheric emittance and surface transmitted radiation components is based on the accurate computation of the true greenhouse-gas optical thickness for the radiosonde data. New relationships among the flux components have been found and are used to construct a quasi-all-sky model of the earth's atmospheric energy transfer process. In the 1948–2008 time period the global average annual mean true greenhouse-gas optical thickness is found to be time-stationary. Simulated radiative no-feedback effects of measured actual CO 2 change over the 61 years were calculated and found to be of magnitude easily detectable by the empirical data and analytical methods used. The data negate increase in CO 2 in the atmosphere as a hypothetical cause for the apparently observed global warming. A hypothesis of significant positive feedback by water vapor effect on atmospheric infrared absorption is also negated by the observed measurements. Apparently major revision of the physics underlying the greenhouse effect is needed.

Suggested Citation

  • Ferenc M. Miskolczi, 2010. "The Stable Stationary Value of the Earth's Global Average Atmospheric Planck-Weighted Greenhouse-Gas Optical Thickness," Energy & Environment, , vol. 21(4), pages 243-262, August.
  • Handle: RePEc:sae:engenv:v:21:y:2010:i:4:p:243-262
    DOI: 10.1260/0958-305X.21.4.243
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1260/0958-305X.21.4.243
    Download Restriction: no

    File URL: https://libkey.io/10.1260/0958-305X.21.4.243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Bony & R Colman & Vm Kattsov & Rp Allan & Cs Bretherton & Jl Dufresne & A Hall & Stéphane Hallegatte & Mm Holland & W Ingram & Da Randall & Bj Soden & G Tselioudis & Mj Webb, 2006. "How well do we understand and evaluate climate change feedback processes?," Post-Print hal-00716782, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Branislava Jovanovic & Dean Collins & Karl Braganza & Doerte Jakob & David Jones, 2011. "A high-quality monthly total cloud amount dataset for Australia," Climatic Change, Springer, vol. 108(3), pages 485-517, October.
    2. Claesson, Jonas & Nycander, Jonas, 2013. "Combined effect of global warming and increased CO2-concentration on vegetation growth in water-limited conditions," Ecological Modelling, Elsevier, vol. 256(C), pages 23-30.
    3. Bas van Geel & Peter A. Ziegler, 2013. "Ipcc Underestimates the Sun's Role in Climate Change," Energy & Environment, , vol. 24(3-4), pages 431-453, June.
    4. Marten, Alex L., 2011. "Transient temperature response modeling in IAMs: The effects of over simplification on the SCC," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-42.
    5. Aiko Voigt & Nicole Albern & Paulo Ceppi & Kevin Grise & Ying Li & Brian Medeiros, 2021. "Clouds, radiation, and atmospheric circulation in the present‐day climate and under climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    6. Salvador Pueyo, 2012. "Solution to the paradox of climate sensitivity," Climatic Change, Springer, vol. 113(2), pages 163-179, July.
    7. Marten, Alex L. & Newbold, Stephen C., 2012. "Estimating the social cost of non-CO2 GHG emissions: Methane and nitrous oxide," Energy Policy, Elsevier, vol. 51(C), pages 957-972.
    8. Rachel James & Richard Washington, 2013. "Changes in African temperature and precipitation associated with degrees of global warming," Climatic Change, Springer, vol. 117(4), pages 859-872, April.
    9. Kikegawa, Yukihiro & Nakajima, Kazusa & Takane, Yuya & Ohashi, Yukitaka & Ihara, Tomohiko, 2022. "A quantification of classic but unquantified positive feedback effects in the urban-building-energy-climate system," Applied Energy, Elsevier, vol. 307(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:21:y:2010:i:4:p:243-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.