IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v40y2019i1_supplp127-142.html
   My bibliography  Save this article

Heterogeneous Returns to Scale of Wind Farms in Northern Europe

Author

Listed:
  • Giacomo Benini
  • Maria Carvalho
  • Ludovic Gaudard
  • Patrick Jochem
  • Kaveh Madani

Abstract

The present paper tries to identify the optimal size of a wind farm using North European data. An empirical analysis of 61 sites constructed between 2004 and 2014 suggests that economies-of-scale are highly heterogeneous across on-shore and off-shore projects. A Varying Coefficient Model captures such diversity by making the impact of the farm site on the amount of its potential capacity a non-linear function of the number of installed turbines. The resulting scale elasticities suggest that small on-shore farms have a bigger per-turbines output than off-shore ones, while the opposite is true for big projects.

Suggested Citation

  • Giacomo Benini & Maria Carvalho & Ludovic Gaudard & Patrick Jochem & Kaveh Madani, 2019. "Heterogeneous Returns to Scale of Wind Farms in Northern Europe," The Energy Journal, , vol. 40(1_suppl), pages 127-142, June.
  • Handle: RePEc:sae:enejou:v:40:y:2019:i:1_suppl:p:127-142
    DOI: 10.5547/01956574.40.SI1.gben
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.40.SI1.gben
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.40.SI1.gben?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chang, Yoosoon & Martinez-Chombo, Eduardo, 2003. "Electricity Demand Analysis Using Cointegration and Error-Correction Models with Time Varying Parameters: The Mexican Case," Working Papers 2003-08, Rice University, Department of Economics.
    2. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    3. Sanchirico, James N. & Wilen, James E., 2005. "Optimal spatial management of renewable resources: matching policy scope to ecosystem scale," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 23-46, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    2. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    3. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    4. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    5. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    6. Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Journal of Econometrics, Elsevier, vol. 240(2).
    7. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    8. Bodory, Hugo & Huber, Martin, 2018. "The causalweight package for causal inference in R," FSES Working Papers 493, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    9. Sterner, Thomas, 2007. "Unobserved diversity, depletion and irreversibility The importance of subpopulations for management of cod stocks," Ecological Economics, Elsevier, vol. 61(2-3), pages 566-574, March.
    10. Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Locally Robust Estimation with Generated Regressors," Papers 2301.10643, arXiv.org, revised Nov 2023.
    11. Nir Billfeld & Moshe Kim, 2024. "Context-dependent Causality (the Non-Nonotonic Case)," Papers 2404.05021, arXiv.org.
    12. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
    13. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    14. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    15. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Roy Allen & John Rehbeck, 2020. "Identification of Random Coefficient Latent Utility Models," Papers 2003.00276, arXiv.org.
    17. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    18. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    20. Suqin Ge & João Macieira, 2024. "Unobserved Worker Quality and Inter‐Industry Wage Differentials," Journal of Industrial Economics, Wiley Blackwell, vol. 72(1), pages 459-515, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:40:y:2019:i:1_suppl:p:127-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.