IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v39y2018i1p59-80.html
   My bibliography  Save this article

Decomposing Aggregate CO2 Emission Changes with Heterogeneity: An Extended Production-theoretical Approach

Author

Listed:
  • H. Wang
  • B.W. Ang
  • P. Zhou

Abstract

Quantifying the driving forces behind changes in aggregate CO2 emissions provides valuable information for supporting policy making in addressing climate change. We study this issue using the production-theoretical decomposition analysis (PDA) technique. Within a production theory framework, PDA examines CO2 emission changes from the perspective of productive efficiency. Although regional and sectoral heterogeneities in energy consumption and emission patterns prevail, they have not been taken into account in the PDA literature. By incorporating relevant decomposition methods, this study proposes an extended PDA approach to resolving the heterogeneity issue. The approach is applied to examine China's aggregate CO2 emission changes in its 11th five-year plan period (20052010). By accounting for the heterogeneities, detailed results at the regional and sectoral levels are generated and further discussions presented.

Suggested Citation

  • H. Wang & B.W. Ang & P. Zhou, 2018. "Decomposing Aggregate CO2 Emission Changes with Heterogeneity: An Extended Production-theoretical Approach," The Energy Journal, , vol. 39(1), pages 59-80, January.
  • Handle: RePEc:sae:enejou:v:39:y:2018:i:1:p:59-80
    DOI: 10.5547/01956574.39.1.hwan
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.39.1.hwan
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.39.1.hwan?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chen, Chien-Ming, 2013. "A critique of non-parametric efficiency analysis in energy economics studies," Energy Economics, Elsevier, vol. 38(C), pages 146-152.
    2. Paul De Boer, 2008. "Additive Structural Decomposition Analysis and Index Number Theory: An Empirical Application of the Montgomery Decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 97-109.
    3. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    4. Erik Dietzenbacher & Alex R. Hoen & Bart Los, 2000. "Labor Productivity in Western Europe 1975–1985: An Intercountry, Interindustry Analysis," Journal of Regional Science, Wiley Blackwell, vol. 40(3), pages 425-452, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, H., 2015. "A generalized MCDA–DEA (multi-criterion decision analysis–data envelopment analysis) approach to construct slacks-based composite indicator," Energy, Elsevier, vol. 80(C), pages 114-122.
    2. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    3. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    4. Chien-Ming Chen, 2014. "Evaluating eco-efficiency with data envelopment analysis: an analytical reexamination," Annals of Operations Research, Springer, vol. 214(1), pages 49-71, March.
    5. repec:rre:publsh:v:38:y:2008:i:3:p:319-41 is not listed on IDEAS
    6. Juan Aparicio & Jesus T. Pastor & Jose L. Sainz-Pardo & Fernando Vidal, 2020. "Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis," Operational Research, Springer, vol. 20(2), pages 747-770, June.
    7. Valadkhani, Abbas & Roshdi, Israfil & Smyth, Russell, 2016. "A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters," Energy Economics, Elsevier, vol. 54(C), pages 363-375.
    8. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    9. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    10. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    11. Fukuyama, Hirofumi & Sekitani, Kazuyuki, 2012. "Decomposing the efficient frontier of the DEA production possibility set into a smallest number of convex polyhedrons by mixed integer programming," European Journal of Operational Research, Elsevier, vol. 221(1), pages 165-174.
    12. Los, Bart & Timmer, Marcel & Vries, Gaaitzen J. de, 2013. "Made in Europe? Trends in International Production Fragmentation," GGDC Research Memorandum GD-131, Groningen Growth and Development Centre, University of Groningen.
    13. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    14. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    15. Chambers, Robert G., 2024. "Numeraire choice, shadow profit, and inefficiency measurement," European Journal of Operational Research, Elsevier, vol. 319(2), pages 658-668.
    16. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    17. R. Robert Russell & William Schworm, 2018. "Technological inefficiency indexes: a binary taxonomy and a generic theorem," Journal of Productivity Analysis, Springer, vol. 49(1), pages 17-23, February.
    18. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    19. Ramli, Noor Asiah & Munisamy, Susila, 2015. "Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure," Economic Modelling, Elsevier, vol. 47(C), pages 219-227.
    20. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    21. Xiaodong Chen & Anda Guo & Jiahao Zhu & Fang Wang & Yanqiu He, 2022. "Accessing performance of transport sector considering risks of climate change and traffic accidents: joint bounded-adjusted measure and Luenberger decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 115-138, March.

    More about this item

    Keywords

    Production-theoretical decomposition analysis; Non-parametric frontier; Index number; Heterogeneity; China;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:39:y:2018:i:1:p:59-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.